Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@
|
|
| 5 |
# - @spaces.GPU MUST be used directly
|
| 6 |
# ============================================================
|
| 7 |
|
| 8 |
-
import spaces # MUST be first
|
| 9 |
|
| 10 |
import os
|
| 11 |
import random
|
|
@@ -37,11 +37,8 @@ if HF_TOKEN:
|
|
| 37 |
device = torch.device("cuda")
|
| 38 |
dtype = torch.float16
|
| 39 |
|
|
|
|
| 40 |
MAX_SEED = np.iinfo(np.int32).max
|
| 41 |
-
MAX_IMAGE_SIZE = 1024
|
| 42 |
-
|
| 43 |
-
pipe_txt2img = None
|
| 44 |
-
pipe_img2img = None
|
| 45 |
|
| 46 |
# ============================================================
|
| 47 |
# Load model (once at startup)
|
|
@@ -53,7 +50,7 @@ pipe_txt2img = StableDiffusionPipeline.from_pretrained(
|
|
| 53 |
safety_checker=None,
|
| 54 |
).to(device)
|
| 55 |
|
| 56 |
-
# π Force tokenizer + text encoder
|
| 57 |
pipe_txt2img.tokenizer = CLIPTokenizer.from_pretrained(
|
| 58 |
MODEL_ID, subfolder="tokenizer"
|
| 59 |
)
|
|
@@ -68,7 +65,7 @@ pipe_txt2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
|
| 68 |
pipe_txt2img.scheduler.config
|
| 69 |
)
|
| 70 |
|
| 71 |
-
# Memory optimisations
|
| 72 |
pipe_txt2img.enable_attention_slicing()
|
| 73 |
pipe_txt2img.enable_vae_slicing()
|
| 74 |
|
|
@@ -79,8 +76,10 @@ except Exception:
|
|
| 79 |
|
| 80 |
pipe_txt2img.set_progress_bar_config(disable=True)
|
| 81 |
|
| 82 |
-
# Img2Img pipeline
|
| 83 |
-
pipe_img2img = StableDiffusionImg2ImgPipeline(
|
|
|
|
|
|
|
| 84 |
pipe_img2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 85 |
pipe_img2img.scheduler.config
|
| 86 |
)
|
|
@@ -94,16 +93,11 @@ def infer(
|
|
| 94 |
negative_prompt,
|
| 95 |
seed,
|
| 96 |
randomize_seed,
|
| 97 |
-
width,
|
| 98 |
-
height,
|
| 99 |
guidance_scale,
|
| 100 |
num_inference_steps,
|
| 101 |
init_image,
|
| 102 |
strength,
|
| 103 |
):
|
| 104 |
-
width = int(width)
|
| 105 |
-
height = int(height)
|
| 106 |
-
|
| 107 |
if randomize_seed:
|
| 108 |
seed = random.randint(0, MAX_SEED)
|
| 109 |
|
|
@@ -125,8 +119,8 @@ def infer(
|
|
| 125 |
image = pipe_txt2img(
|
| 126 |
prompt=prompt,
|
| 127 |
negative_prompt=negative_prompt,
|
| 128 |
-
width=
|
| 129 |
-
height=
|
| 130 |
guidance_scale=float(guidance_scale),
|
| 131 |
num_inference_steps=int(num_inference_steps),
|
| 132 |
generator=generator,
|
|
@@ -141,25 +135,34 @@ def infer(
|
|
| 141 |
# ============================================================
|
| 142 |
# UI
|
| 143 |
# ============================================================
|
| 144 |
-
with gr.Blocks(title="Stable Diffusion (
|
| 145 |
-
gr.Markdown("## Stable Diffusion Generator (GPU)")
|
| 146 |
|
| 147 |
-
prompt = gr.Textbox(
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
run_button = gr.Button("Generate")
|
| 151 |
result = gr.Image(label="Result")
|
| 152 |
status = gr.Markdown("")
|
| 153 |
|
| 154 |
with gr.Accordion("Advanced Settings", open=False):
|
| 155 |
-
negative_prompt = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
| 156 |
seed = gr.Slider(0, MAX_SEED, step=1, value=0, label="Seed")
|
| 157 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 158 |
-
width = 512 #gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Width")
|
| 159 |
-
height = 512 # gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Height")
|
| 160 |
guidance_scale = gr.Slider(1, 20, step=0.5, value=7.5, label="Guidance scale")
|
| 161 |
num_inference_steps = gr.Slider(1, 40, step=1, value=30, label="Steps")
|
| 162 |
-
strength = gr.Slider(0.0, 1.0, step=0.05, value=0.7, label="Image strength")
|
| 163 |
|
| 164 |
run_button.click(
|
| 165 |
fn=infer,
|
|
@@ -168,8 +171,6 @@ with gr.Blocks(title="Stable Diffusion (Unlearning Model)") as demo:
|
|
| 168 |
negative_prompt,
|
| 169 |
seed,
|
| 170 |
randomize_seed,
|
| 171 |
-
width,
|
| 172 |
-
height,
|
| 173 |
guidance_scale,
|
| 174 |
num_inference_steps,
|
| 175 |
init_image,
|
|
|
|
| 5 |
# - @spaces.GPU MUST be used directly
|
| 6 |
# ============================================================
|
| 7 |
|
| 8 |
+
import spaces # MUST be first
|
| 9 |
|
| 10 |
import os
|
| 11 |
import random
|
|
|
|
| 37 |
device = torch.device("cuda")
|
| 38 |
dtype = torch.float16
|
| 39 |
|
| 40 |
+
IMAGE_SIZE = 512
|
| 41 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# ============================================================
|
| 44 |
# Load model (once at startup)
|
|
|
|
| 50 |
safety_checker=None,
|
| 51 |
).to(device)
|
| 52 |
|
| 53 |
+
# π Force tokenizer + text encoder
|
| 54 |
pipe_txt2img.tokenizer = CLIPTokenizer.from_pretrained(
|
| 55 |
MODEL_ID, subfolder="tokenizer"
|
| 56 |
)
|
|
|
|
| 65 |
pipe_txt2img.scheduler.config
|
| 66 |
)
|
| 67 |
|
| 68 |
+
# Memory optimisations
|
| 69 |
pipe_txt2img.enable_attention_slicing()
|
| 70 |
pipe_txt2img.enable_vae_slicing()
|
| 71 |
|
|
|
|
| 76 |
|
| 77 |
pipe_txt2img.set_progress_bar_config(disable=True)
|
| 78 |
|
| 79 |
+
# Img2Img pipeline
|
| 80 |
+
pipe_img2img = StableDiffusionImg2ImgPipeline(
|
| 81 |
+
**pipe_txt2img.components
|
| 82 |
+
).to(device)
|
| 83 |
pipe_img2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 84 |
pipe_img2img.scheduler.config
|
| 85 |
)
|
|
|
|
| 93 |
negative_prompt,
|
| 94 |
seed,
|
| 95 |
randomize_seed,
|
|
|
|
|
|
|
| 96 |
guidance_scale,
|
| 97 |
num_inference_steps,
|
| 98 |
init_image,
|
| 99 |
strength,
|
| 100 |
):
|
|
|
|
|
|
|
|
|
|
| 101 |
if randomize_seed:
|
| 102 |
seed = random.randint(0, MAX_SEED)
|
| 103 |
|
|
|
|
| 119 |
image = pipe_txt2img(
|
| 120 |
prompt=prompt,
|
| 121 |
negative_prompt=negative_prompt,
|
| 122 |
+
width=IMAGE_SIZE,
|
| 123 |
+
height=IMAGE_SIZE,
|
| 124 |
guidance_scale=float(guidance_scale),
|
| 125 |
num_inference_steps=int(num_inference_steps),
|
| 126 |
generator=generator,
|
|
|
|
| 135 |
# ============================================================
|
| 136 |
# UI
|
| 137 |
# ============================================================
|
| 138 |
+
with gr.Blocks(title="Stable Diffusion (512Γ512)") as demo:
|
| 139 |
+
gr.Markdown("## Stable Diffusion Generator (GPU, 512Γ512)")
|
| 140 |
|
| 141 |
+
prompt = gr.Textbox(
|
| 142 |
+
label="Prompt",
|
| 143 |
+
placeholder="Describe the image you want to generate",
|
| 144 |
+
lines=2,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
init_image = gr.Image(
|
| 148 |
+
label="Initial image (optional, enables img2img)",
|
| 149 |
+
type="pil",
|
| 150 |
+
)
|
| 151 |
|
| 152 |
run_button = gr.Button("Generate")
|
| 153 |
result = gr.Image(label="Result")
|
| 154 |
status = gr.Markdown("")
|
| 155 |
|
| 156 |
with gr.Accordion("Advanced Settings", open=False):
|
| 157 |
+
negative_prompt = gr.Textbox(
|
| 158 |
+
label="Negative prompt",
|
| 159 |
+
value="nsfw, (low quality, worst quality:1.2), watermark, signature, ugly, deformed",
|
| 160 |
+
)
|
| 161 |
seed = gr.Slider(0, MAX_SEED, step=1, value=0, label="Seed")
|
| 162 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
|
|
|
|
|
|
| 163 |
guidance_scale = gr.Slider(1, 20, step=0.5, value=7.5, label="Guidance scale")
|
| 164 |
num_inference_steps = gr.Slider(1, 40, step=1, value=30, label="Steps")
|
| 165 |
+
strength = gr.Slider(0.0, 1.0, step=0.05, value=0.7, label="Image strength (img2img)")
|
| 166 |
|
| 167 |
run_button.click(
|
| 168 |
fn=infer,
|
|
|
|
| 171 |
negative_prompt,
|
| 172 |
seed,
|
| 173 |
randomize_seed,
|
|
|
|
|
|
|
| 174 |
guidance_scale,
|
| 175 |
num_inference_steps,
|
| 176 |
init_image,
|