HunyuanOCR / app.py
aleclyu's picture
debug zerogpu timeout error
f72db18
raw
history blame
37 kB
import os
import torch
import numpy as np
from PIL import Image
import spaces
from transformers import AutoProcessor
from qwen_vl_utils import process_vision_info # 请确保该模块在你的环境可用
from transformers import HunYuanVLForConditionalGeneration
import gradio as gr
from argparse import ArgumentParser
import copy
import requests
from io import BytesIO
import tempfile
import hashlib
import gc
# 关键优化:设置环境变量加速 transformers
os.environ['TOKENIZERS_PARALLELISM'] = 'false' # 避免tokenizer警告
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = '1'
# 禁用 PyTorch 的 JIT 融合优化(在某些情况下会导致首次运行极慢)
# torch._C._jit_set_profiling_executor(False)
# torch._C._jit_set_profiling_mode(False)
def _get_args():
parser = ArgumentParser()
parser.add_argument('-c',
'--checkpoint-path',
type=str,
default='tencent/HunyuanOCR',
help='Checkpoint name or path, default to %(default)r')
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--flash-attn2',
action='store_true',
default=False,
help='Enable flash_attention_2 when loading the model.')
parser.add_argument('--share',
action='store_true',
default=False,
help='Create a publicly shareable link for the interface.')
parser.add_argument('--inbrowser',
action='store_true',
default=False,
help='Automatically launch the interface in a new tab on the default browser.')
args = parser.parse_args()
return args
def _load_model_processor(args):
# ZeroGPU 环境:模型在 CPU 上加载,使用 eager 模式
# 在 @spaces.GPU 装饰器内会自动移到 GPU
print(f"[INFO] 加载模型(ZeroGPU 环境使用 eager 模式)")
print(f"[INFO] 加载时 CUDA available: {torch.cuda.is_available()}")
model = HunYuanVLForConditionalGeneration.from_pretrained(
args.checkpoint_path,
attn_implementation="eager", # ZeroGPU 必须用 eager,因为初始在 CPU
torch_dtype=torch.bfloat16,
device_map="auto", # 改回 auto,让 ZeroGPU 自动管理
)
# 关键:禁用梯度检查点(如果启用会导致极慢)
if hasattr(model, 'gradient_checkpointing_disable'):
model.gradient_checkpointing_disable()
print(f"[INFO] 梯度检查点已禁用")
# 设置为评估模式
model.eval()
print(f"[INFO] 模型设置为评估模式")
processor = AutoProcessor.from_pretrained(args.checkpoint_path, use_fast=False, trust_remote_code=True)
print(f"[INFO] 模型加载完成,当前设备: {next(model.parameters()).device}")
return model, processor
def _parse_text(text):
"""解析文本,处理特殊格式"""
# if text is None:
# return text
text = text.replace("<trans>", "").replace("</trans>", "")
return text
def _remove_image_special(text):
"""移除图像特殊标记"""
# if text is None:
# return text
# # 移除可能的图像特殊标记
# import re
# text = re.sub(r'<image>|</image>|<img>|</img>', '', text)
# return text
return text
def _gc():
"""垃圾回收"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _launch_demo(args, model, processor):
# 全局变量用于跟踪是否是首次调用
first_call = [True]
# 关键修复:移除 model 和 processor 参数,使用闭包访问
# 增加 duration 到 120 秒,避免高峰期超时
@spaces.GPU(duration=120)
def call_local_model(messages):
import time
import sys
start_time = time.time()
if first_call[0]:
print(f"[INFO] ========== 这是首次推理调用 ==========")
first_call[0] = False
else:
print(f"[INFO] ========== 这是第 N 次推理调用 ==========")
print(f"[DEBUG] ========== 开始推理 ==========")
print(f"[DEBUG] Python version: {sys.version}")
print(f"[DEBUG] PyTorch version: {torch.__version__}")
print(f"[DEBUG] CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"[DEBUG] CUDA device count: {torch.cuda.device_count()}")
print(f"[DEBUG] Current CUDA device: {torch.cuda.current_device()}")
print(f"[DEBUG] Device name: {torch.cuda.get_device_name(0)}")
print(f"[DEBUG] GPU Memory allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
print(f"[DEBUG] GPU Memory reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
# 关键:检查并确保模型在 GPU 上
model_device = next(model.parameters()).device
print(f"[DEBUG] Model device: {model_device}")
print(f"[DEBUG] Model dtype: {next(model.parameters()).dtype}")
if str(model_device) == 'cpu':
print(f"[ERROR] 模型在 CPU 上!尝试移动到 GPU...")
if torch.cuda.is_available():
move_start = time.time()
model.cuda()
move_time = time.time() - move_start
print(f"[DEBUG] Model device after cuda(): {next(model.parameters()).device}")
print(f"[DEBUG] 模型移动到 GPU 耗时: {move_time:.2f}s")
else:
print(f"[CRITICAL] CUDA 不可用!将在 CPU 上运行,速度会很慢!")
print(f"[CRITICAL] 这可能是因为 ZeroGPU 资源紧张或超时")
else:
print(f"[INFO] 模型已在 GPU 上: {model_device}")
messages = [messages]
# 使用 processor 构造输入格式
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
print(f"[DEBUG] 模板构建完成,耗时: {time.time() - start_time:.2f}s")
image_inputs, video_inputs = process_vision_info(messages)
print(f"[DEBUG] 图像处理完成,耗时: {time.time() - start_time:.2f}s")
# 检查图像输入大小
if image_inputs:
for idx, img in enumerate(image_inputs):
if hasattr(img, 'size'):
print(f"[DEBUG] Image {idx} size: {img.size}")
elif isinstance(img, np.ndarray):
print(f"[DEBUG] Image {idx} shape: {img.shape}")
print(f"[DEBUG] 开始 processor 编码输入...")
processor_start = time.time()
print(f"[DEBUG] 开始 processor 编码输入...")
processor_start = time.time()
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
print(f"[DEBUG] Processor 编码完成,耗时: {time.time() - processor_start:.2f}s")
# 确保输入在 GPU 上
to_device_start = time.time()
inputs = inputs.to('cuda' if torch.cuda.is_available() else 'cpu')
print(f"[DEBUG] 输入移到设备耗时: {time.time() - to_device_start:.2f}s")
print(f"[DEBUG] 输入准备完成,总耗时: {time.time() - start_time:.2f}s")
print(f"[DEBUG] Input IDs shape: {inputs.input_ids.shape}")
print(f"[DEBUG] Input device: {inputs.input_ids.device}")
print(f"[DEBUG] Input sequence length: {inputs.input_ids.shape[1]}")
# 生成
gen_start = time.time()
print(f"[DEBUG] ========== 开始生成 tokens ==========")
# 关键优化:根据任务类型动态调整 max_new_tokens
# OCR 任务通常不需要 8192 tokens,这会导致不必要的等待
max_new_tokens = 64 # 从 8192 降到 2048,大幅提速
print(f"[DEBUG] max_new_tokens: {max_new_tokens}")
# 添加进度回调
token_count = [0]
last_time = [gen_start]
def progress_callback(input_ids, scores, **kwargs):
token_count[0] += 1
current_time = time.time()
if token_count[0] % 10 == 0 or (current_time - last_time[0]) > 2.0:
elapsed = current_time - gen_start
tokens_per_sec = token_count[0] / elapsed if elapsed > 0 else 0
print(f"[DEBUG] 已生成 {token_count[0]} tokens, 速度: {tokens_per_sec:.2f} tokens/s, 耗时: {elapsed:.2f}s")
last_time[0] = current_time
return False
with torch.no_grad():
print(f"[DEBUG] 进入 torch.no_grad() 上下文,耗时: {time.time() - start_time:.2f}s")
# 先做一次简单的前向传播测试
print(f"[DEBUG] 测试前向传播...")
forward_test_start = time.time()
try:
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
test_outputs = model(**inputs, use_cache=False)
print(f"[DEBUG] 前向传播测试成功,耗时: {time.time() - forward_test_start:.2f}s")
except Exception as e:
print(f"[WARNING] 前向传播测试失败: {e}")
print(f"[DEBUG] 开始调用 model.generate()... (当前耗时: {time.time() - start_time:.2f}s)")
generate_call_start = time.time()
try:
# 关键:添加更激进的生成参数,强制早停
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
print(f"[DEBUG] model.generate() 返回,耗时: {time.time() - generate_call_start:.2f}s")
except Exception as e:
print(f"[ERROR] 生成失败: {e}")
import traceback
traceback.print_exc()
raise
print(f"[DEBUG] 退出 torch.no_grad() 上下文")
gen_time = time.time() - gen_start
print(f"[DEBUG] ========== 生成完成 ==========")
print(f"[DEBUG] 生成耗时: {gen_time:.2f}s")
print(f"[DEBUG] Output shape: {generated_ids.shape}")
# 解码输出
if "input_ids" in inputs:
input_ids = inputs.input_ids
else:
input_ids = inputs.inputs
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(input_ids, generated_ids)
]
actual_tokens = len(generated_ids_trimmed[0])
print(f"[DEBUG] 实际生成 token 数: {actual_tokens}")
print(f"[DEBUG] 每 token 耗时: {gen_time/actual_tokens if actual_tokens > 0 else 0:.3f}s")
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
total_time = time.time() - start_time
print(f"[DEBUG] ========== 全部完成 ==========")
print(f"[DEBUG] 总耗时: {total_time:.2f}s")
print(f"[DEBUG] 输出长度: {len(output_texts[0])} 字符")
print(f"[DEBUG] 输出预览: {output_texts[0][:100]}...")
return output_texts
def create_predict_fn():
def predict(_chatbot, task_history):
nonlocal model, processor
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
if len(chat_query) == 0:
_chatbot.pop()
task_history.pop()
return _chatbot
print('User: ', query)
history_cp = copy.deepcopy(task_history)
full_response = ''
messages = []
content = []
for q, a in history_cp:
if isinstance(q, (tuple, list)):
# 判断是URL还是本地路径
img_path = q[0]
if img_path.startswith(('http://', 'https://')):
content.append({'type': 'image', 'image': img_path})
else:
content.append({'type': 'image', 'image': f'{os.path.abspath(img_path)}'})
else:
content.append({'type': 'text', 'text': q})
messages.append({'role': 'user', 'content': content})
messages.append({'role': 'assistant', 'content': [{'type': 'text', 'text': a}]})
content = []
messages.pop()
# 调用模型获取响应(已修改:不再传递 model 和 processor)
response_list = call_local_model(messages)
response = response_list[0] if response_list else ""
_chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response)))
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
print('HunyuanOCR: ' + _parse_text(full_response))
yield _chatbot
return predict
def create_regenerate_fn():
def regenerate(_chatbot, task_history):
nonlocal model, processor
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
# 使用外层的predict函数
_chatbot_gen = predict(_chatbot, task_history)
for _chatbot in _chatbot_gen:
yield _chatbot
return regenerate
predict = create_predict_fn()
regenerate = create_regenerate_fn()
def add_text(history, task_history, text):
task_text = text
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ''
def add_file(history, task_history, file):
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def download_url_image(url):
"""下载 URL 图片到本地临时文件"""
try:
# 使用 URL 的哈希值作为文件名,避免重复下载
url_hash = hashlib.md5(url.encode()).hexdigest()
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, f"hyocr_demo_{url_hash}.png")
# 如果文件已存在,直接返回
if os.path.exists(temp_path):
return temp_path
# 下载图片
response = requests.get(url, timeout=10)
response.raise_for_status()
with open(temp_path, 'wb') as f:
f.write(response.content)
return temp_path
except Exception as e:
print(f"下载图片失败: {url}, 错误: {e}")
return url # 失败时返回原 URL
def reset_user_input():
return gr.update(value='')
def reset_state(_chatbot, task_history):
task_history.clear()
_chatbot.clear()
_gc()
return []
# 示例图片路径配置 - 请替换为实际图片路径
EXAMPLE_IMAGES = {
"spotting": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/23cc43af9376b948f3febaf4ce854a8a.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523817%3B1794627877&q-key-time=1763523817%3B1794627877&q-header-list=host&q-url-param-list=&q-signature=8ebd6a9d3ed7eba73bb783c337349db9c29972e2", # TODO: 替换为场景文字示例图片路径
"parsing": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/c4997ebd1be9f7c3e002fabba8b46cb7.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523818%3B1794627878&q-key-time=1763523818%3B1794627878&q-header-list=host&q-url-param-list=&q-signature=d2cd12be4c7902821c8c82203e4642624046911a",
"ie": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/7c67c0f78e4423d51644a325da1f8e85.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523818%3B1794627878&q-key-time=1763523818%3B1794627878&q-header-list=host&q-url-param-list=&q-signature=803648f3253706f654faf1423869fd9e00e7056e",
"vqa": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/fea0865d1c70c53aaa2ab91cd0e787f5.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523818%3B1794627878&q-key-time=1763523818%3B1794627878&q-header-list=host&q-url-param-list=&q-signature=a92b94e298a11aea130d730d3b16ee761acc3f4c",
"translation": "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/d1af99d35e9db9e820ebebb5bc68993a.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763967603%3B1795071663&q-key-time=1763967603%3B1795071663&q-header-list=host&q-url-param-list=&q-signature=a57080c0b3d4c76ea74b88c6291f9004241c9d49",
# "spotting": "examples/spotting.jpg",
# "parsing": "examples/parsing.jpg",
# "ie": "examples/ie.jpg",
# "vqa": "examples/vqa.jpg",
# "translation": "examples/translation.jpg"
}
with gr.Blocks(css="""
body {
background: #f5f7fa;
}
.gradio-container {
max-width: 100% !important;
padding: 0 40px !important;
}
.header-section {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 30px 0;
margin: -20px -40px 30px -40px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
.header-content {
max-width: 1600px;
margin: 0 auto;
padding: 0 40px;
display: flex;
align-items: center;
gap: 20px;
}
.header-logo {
height: 60px;
}
.header-text h1 {
color: white;
font-size: 32px;
font-weight: bold;
margin: 0 0 5px 0;
}
.header-text p {
color: rgba(255,255,255,0.9);
margin: 0;
font-size: 14px;
}
.main-container {
max-width: 1800px;
margin: 0 auto;
}
.chatbot {
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08) !important;
border-radius: 12px !important;
border: 1px solid #e5e7eb !important;
background: white !important;
}
.input-panel {
background: white;
padding: 20px;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
border: 1px solid #e5e7eb;
}
.input-box textarea {
border: 2px solid #e5e7eb !important;
border-radius: 8px !important;
font-size: 14px !important;
}
.input-box textarea:focus {
border-color: #667eea !important;
}
.btn-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: 500 !important;
padding: 10px 24px !important;
font-size: 14px !important;
}
.btn-primary:hover {
transform: translateY(-1px) !important;
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4) !important;
}
.btn-secondary {
background: white !important;
border: 2px solid #667eea !important;
color: #667eea !important;
padding: 8px 20px !important;
font-size: 14px !important;
}
.btn-secondary:hover {
background: #f0f4ff !important;
}
.example-grid {
display: grid;
grid-template-columns: repeat(4, 1fr);
gap: 20px;
margin-top: 30px;
}
.example-card {
background: white;
border-radius: 12px;
overflow: hidden;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
border: 1px solid #e5e7eb;
transition: all 0.3s ease;
}
.example-card:hover {
transform: translateY(-4px);
box-shadow: 0 8px 20px rgba(102, 126, 234, 0.15);
border-color: #667eea;
}
.example-image-wrapper {
width: 100%;
height: 180px;
overflow: hidden;
background: #f5f7fa;
}
.example-image-wrapper img {
width: 100%;
height: 100%;
object-fit: cover;
}
.example-btn {
width: 100% !important;
white-space: pre-wrap !important;
text-align: left !important;
padding: 16px !important;
background: white !important;
border: none !important;
border-top: 1px solid #e5e7eb !important;
color: #1f2937 !important;
font-size: 14px !important;
line-height: 1.6 !important;
transition: all 0.3s ease !important;
font-weight: 500 !important;
}
.example-btn:hover {
background: #f9fafb !important;
color: #667eea !important;
}
.feature-section {
background: white;
padding: 24px;
border-radius: 12px;
margin-top: 30px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
border: 1px solid #e5e7eb;
}
.section-title {
font-size: 18px;
font-weight: 600;
color: #1f2937;
margin-bottom: 20px;
padding-bottom: 12px;
border-bottom: 2px solid #e5e7eb;
}
""") as demo:
# 顶部导航栏
gr.HTML("""
<div class="header-section">
<div class="header-content">
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/6ef6928b21b323b2b00115f86a779d8f.png?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763450355%3B1794554415&q-key-time=1763450355%3B1794554415&q-header-list=host&q-url-param-list=&q-signature=41328696dc34571324aa18c791c1196192e729c6" class="header-logo"/>
<div class="header-text">
<h1>HunyuanOCR</h1>
<p>Powered by Tencent Hunyuan Team</p>
</div>
</div>
</div>
""")
with gr.Column(elem_classes=["main-container"]):
# 对话区域 - 全宽
chatbot = gr.Chatbot(
label='💬 对话窗口',
height=600,
bubble_full_width=False,
layout="bubble",
show_copy_button=True,
avatar_images=(None, "https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/6ef6928b21b323b2b00115f86a779d8f.png?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763450355%3B1794554415&q-key-time=1763450355%3B1794554415&q-header-list=host&q-url-param-list=&q-signature=41328696dc34571324aa18c791c1196192e729c6"),
elem_classes=["chatbot"]
)
# 输入控制面板 - 全宽
with gr.Group(elem_classes=["input-panel"]):
query = gr.Textbox(
lines=2,
label='💭 输入您的问题',
placeholder='请先上传图片,然后输入问题。例如:检测并识别图片中的文字,将文本坐标格式化输出。',
elem_classes=["input-box"],
show_label=False
)
with gr.Row():
addfile_btn = gr.UploadButton('📁 上传图片', file_types=['image'], elem_classes=["btn-secondary"])
submit_btn = gr.Button('🚀 发送消息', variant="primary", elem_classes=["btn-primary"], scale=3)
regen_btn = gr.Button('🔄 重新生成', elem_classes=["btn-secondary"])
empty_bin = gr.Button('🗑️ 清空对话', elem_classes=["btn-secondary"])
# 示例区域 - 5列网格布局
gr.HTML('<div class="section-title">📚 快速体验示例 - 点击下方卡片快速加载</div>')
with gr.Row():
# 示例1:spotting
with gr.Column(scale=1):
with gr.Group(elem_classes=["example-card"]):
gr.HTML("""
<div class="example-image-wrapper">
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/23cc43af9376b948f3febaf4ce854a8a.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523817%3B1794627877&q-key-time=1763523817%3B1794627877&q-header-list=host&q-url-param-list=&q-signature=8ebd6a9d3ed7eba73bb783c337349db9c29972e2" alt="文字检测识别"/>
</div>
""")
example_1_btn = gr.Button("🔍 文字检测和识别", elem_classes=["example-btn"])
# 示例2:parsing
with gr.Column(scale=1):
with gr.Group(elem_classes=["example-card"]):
gr.HTML("""
<div class="example-image-wrapper">
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/c4997ebd1be9f7c3e002fabba8b46cb7.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523818%3B1794627878&q-key-time=1763523818%3B1794627878&q-header-list=host&q-url-param-list=&q-signature=d2cd12be4c7902821c8c82203e4642624046911a" alt="文档解析"/>
</div>
""")
example_2_btn = gr.Button("📋 文档解析", elem_classes=["example-btn"])
# 示例3:ie
with gr.Column(scale=1):
with gr.Group(elem_classes=["example-card"]):
gr.HTML("""
<div class="example-image-wrapper">
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/7c67c0f78e4423d51644a325da1f8e85.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523818%3B1794627878&q-key-time=1763523818%3B1794627878&q-header-list=host&q-url-param-list=&q-signature=803648f3253706f654faf1423869fd9e00e7056e" alt="信息抽取"/>
</div>
""")
example_3_btn = gr.Button("🎯 信息抽取", elem_classes=["example-btn"])
# 示例4:VQA
with gr.Column(scale=1):
with gr.Group(elem_classes=["example-card"]):
gr.HTML("""
<div class="example-image-wrapper">
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/fea0865d1c70c53aaa2ab91cd0e787f5.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763523818%3B1794627878&q-key-time=1763523818%3B1794627878&q-header-list=host&q-url-param-list=&q-signature=a92b94e298a11aea130d730d3b16ee761acc3f4c" alt="视觉问答"/>
</div>
""")
example_4_btn = gr.Button("💬 视觉问答", elem_classes=["example-btn"])
# 示例5:translation
with gr.Column(scale=1):
with gr.Group(elem_classes=["example-card"]):
gr.HTML("""
<div class="example-image-wrapper">
<img src="https://hunyuan-multimodal-1258344703.cos.ap-guangzhou.myqcloud.com/hunyuan_multimodal/mllm_data/d1af99d35e9db9e820ebebb5bc68993a.jpg?q-sign-algorithm=sha1&q-ak=AKIDbLEFMUYZgyERZnygUQLC7xkQ1hTAzulX&q-sign-time=1763967603%3B1795071663&q-key-time=1763967603%3B1795071663&q-header-list=host&q-url-param-list=&q-signature=a57080c0b3d4c76ea74b88c6291f9004241c9d49" alt="图片翻译"/>
</div>
""")
example_5_btn = gr.Button("🌐 图片翻译", elem_classes=["example-btn"])
task_history = gr.State([])
# 示例1:文档识别
def load_example_1(history, task_hist):
prompt = "检测并识别图片中的文字,将文本坐标格式化输出。"
image_url = EXAMPLE_IMAGES["spotting"]
# 下载 URL 图片到本地
image_path = download_url_image(image_url)
# 清空对话历史
history = []
task_hist = []
history = history + [((image_path,), None)]
task_hist = task_hist + [((image_path,), None)]
return history, task_hist, prompt
# 示例2:场景文字
def load_example_2(history, task_hist):
prompt = "提取文档图片中正文的所有信息用markdown 格式表示,其中页眉、页脚部分忽略,表格用html 格式表达,文档中公式用latex 格式表示,按照阅读顺序组织进行解析。"
image_url = EXAMPLE_IMAGES["parsing"]
# 下载 URL 图片到本地
image_path = download_url_image(image_url)
# 清空对话历史
history = []
task_hist = []
history = history + [((image_path,), None)]
task_hist = task_hist + [((image_path,), None)]
return history, task_hist, prompt
# 示例3:表格提取
def load_example_3(history, task_hist):
prompt = "提取图片中的:['单价', '上车时间','发票号码', '省前缀', '总金额', '发票代码', '下车时间', '里程数'] 的字段内容,并且按照JSON格式返回。"
image_url = EXAMPLE_IMAGES["ie"]
# 下载 URL 图片到本地
image_path = download_url_image(image_url)
# 清空对话历史
history = []
task_hist = []
history = history + [((image_path,), None)]
task_hist = task_hist + [((image_path,), None)]
return history, task_hist, prompt
# 示例4:手写体
def load_example_4(history, task_hist):
prompt = "What is the highest life expectancy at birth of male?"
image_url = EXAMPLE_IMAGES["vqa"]
# 下载 URL 图片到本地
image_path = download_url_image(image_url)
# 清空对话历史
history = []
task_hist = []
history = history + [((image_path,), None)]
task_hist = task_hist + [((image_path,), None)]
return history, task_hist, prompt
# 示例5:翻译
def load_example_5(history, task_hist):
prompt = "将图中文字翻译为中文。"
image_url = EXAMPLE_IMAGES["translation"]
# 下载 URL 图片到本地
image_path = download_url_image(image_url)
# 清空对话历史
history = []
task_hist = []
history = history + [((image_path,), None)]
task_hist = task_hist + [((image_path,), None)]
return history, task_hist, prompt
# 绑定事件
example_1_btn.click(load_example_1, [chatbot, task_history], [chatbot, task_history, query])
example_2_btn.click(load_example_2, [chatbot, task_history], [chatbot, task_history, query])
example_3_btn.click(load_example_3, [chatbot, task_history], [chatbot, task_history, query])
example_4_btn.click(load_example_4, [chatbot, task_history], [chatbot, task_history, query])
example_5_btn.click(load_example_5, [chatbot, task_history], [chatbot, task_history, query])
submit_btn.click(add_text, [chatbot, task_history, query],
[chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [chatbot, task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
# 功能说明区域
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div class="feature-section">
<div class="section-title">✨ 核心功能</div>
<ul style="line-height: 2; color: #4b5563; font-size: 14px; margin: 0; padding-left: 20px;">
<li><strong>🎯 高精度文字检测识别</strong> - 支持多场景文字检测与识别</li>
<li><strong>📐 智能文档解析</strong> - 自动识别文档结构,支持多粒度文档解析</li>
<li><strong>📋 信息提取</strong> - 支持30+高频卡证票据识别和结构化输出</li>
<li><strong>✏️ 视觉问答</strong> - 支持以文本为中心的开放式问答</li>
<li><strong>🌍 跨语言翻译</strong> - 支持中英互译及14+语种译为中英文</li>
</ul>
</div>
""")
with gr.Column(scale=1):
gr.HTML("""
<div class="feature-section">
<div class="section-title">💡 使用建议</div>
<ul style="line-height: 2; color: #4b5563; font-size: 14px; margin: 0; padding-left: 20px;">
<li><strong>图片质量</strong> - 确保图片清晰,光线充足,分辨率适中</li>
<li><strong>拍摄角度</strong> - 避免严重倾斜、遮挡或反光,正面拍摄效果最佳</li>
<li><strong>文件大小</strong> - 建议单张图片不超过 10MB,支持 JPG/PNG 格式</li>
<li><strong>使用场景</strong> - 适用于文字检测识别、文档数字化、票据识别、信息提取、文字图片翻译等</li>
<li><strong>合规使用</strong> - 仅供学习研究,请遵守法律法规,尊重隐私权</li>
</ul>
</div>
""")
# 底部版权信息
gr.HTML("""
<div style="text-align: center; color: #9ca3af; font-size: 13px; margin-top: 40px; padding: 20px; border-top: 1px solid #e5e7eb;">
<p style="margin: 0;">© 2025 Tencent Hunyuan Team. All rights reserved.</p>
<p style="margin: 5px 0 0 0;">本系统基于 HunyuanOCR 构建 | 仅供学习研究使用</p>
</div>
""")
demo.queue().launch(
share=args.share,
inbrowser=args.inbrowser,
# server_port=args.server_port,
# server_name=args.server_name,
)
def main():
args = _get_args()
model, processor = _load_model_processor(args)
_launch_demo(args, model, processor)
if __name__ == '__main__':
main()