Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
|
| 5 |
+
|
| 6 |
+
model_id = "textcleanlm/textclean-4B"
|
| 7 |
+
model = None
|
| 8 |
+
tokenizer = None
|
| 9 |
+
|
| 10 |
+
def load_model():
|
| 11 |
+
global model, tokenizer
|
| 12 |
+
if model is None:
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
+
|
| 15 |
+
# Add padding token if needed
|
| 16 |
+
if tokenizer.pad_token is None:
|
| 17 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 18 |
+
|
| 19 |
+
# Try different model classes
|
| 20 |
+
for model_class in [AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel]:
|
| 21 |
+
try:
|
| 22 |
+
model = model_class.from_pretrained(
|
| 23 |
+
model_id,
|
| 24 |
+
torch_dtype=torch.bfloat16,
|
| 25 |
+
device_map="auto"
|
| 26 |
+
)
|
| 27 |
+
break
|
| 28 |
+
except:
|
| 29 |
+
continue
|
| 30 |
+
|
| 31 |
+
if model is None:
|
| 32 |
+
raise ValueError(f"Could not load model {model_id}")
|
| 33 |
+
|
| 34 |
+
return model, tokenizer
|
| 35 |
+
|
| 36 |
+
@spaces.GPU(duration=60)
|
| 37 |
+
def clean_text(text):
|
| 38 |
+
model, tokenizer = load_model()
|
| 39 |
+
|
| 40 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
| 41 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 42 |
+
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
outputs = model.generate(
|
| 45 |
+
**inputs,
|
| 46 |
+
max_length=512,
|
| 47 |
+
num_beams=4,
|
| 48 |
+
early_stopping=True
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
cleaned_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
+
return cleaned_text
|
| 53 |
+
|
| 54 |
+
iface = gr.Interface(
|
| 55 |
+
fn=clean_text,
|
| 56 |
+
inputs=gr.Textbox(
|
| 57 |
+
lines=5,
|
| 58 |
+
placeholder="Enter text to clean...",
|
| 59 |
+
label="Input Text"
|
| 60 |
+
),
|
| 61 |
+
outputs=gr.Textbox(
|
| 62 |
+
lines=5,
|
| 63 |
+
label="Cleaned Text"
|
| 64 |
+
),
|
| 65 |
+
title="TextClean-4B Demo",
|
| 66 |
+
description="Simple demo for text cleaning using textcleanlm/textclean-4B model"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
iface.launch()
|