Spaces:
Runtime error
Runtime error
Commit
·
c6509f9
1
Parent(s):
cd55902
updated
Browse files- .app.py.swp +0 -0
- app.py +45 -8
.app.py.swp
ADDED
|
Binary file (4.1 kB). View file
|
|
|
app.py
CHANGED
|
@@ -2,24 +2,61 @@ from fastapi import FastAPI
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
app = FastAPI()
|
| 7 |
|
| 8 |
-
#
|
| 9 |
base_model_path = "NousResearch/Hermes-3-Llama-3.2-3B"
|
| 10 |
adapter_path = "thinkingnew/llama_invs_adapter"
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@app.get("/")
|
| 19 |
async def root():
|
| 20 |
return {"message": "Model is running! Use /generate/ for text generation."}
|
|
|
|
|
|
|
| 21 |
@app.post("/generate/")
|
| 22 |
async def generate_text(prompt: str):
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
return {"response": result[0]['generated_text']}
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
+
# Define paths
|
| 10 |
base_model_path = "NousResearch/Hermes-3-Llama-3.2-3B"
|
| 11 |
adapter_path = "thinkingnew/llama_invs_adapter"
|
| 12 |
|
| 13 |
+
# Check if GPU is available
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
|
| 16 |
+
# Create offload directory if running on CPU
|
| 17 |
+
offload_dir = "./offload"
|
| 18 |
+
os.makedirs(offload_dir, exist_ok=True)
|
| 19 |
+
|
| 20 |
+
# Load base model
|
| 21 |
+
try:
|
| 22 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
base_model_path,
|
| 24 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 25 |
+
device_map="auto",
|
| 26 |
+
offload_folder=offload_dir if device == "cpu" else None # Offload to disk if running on CPU
|
| 27 |
+
)
|
| 28 |
+
except Exception as e:
|
| 29 |
+
print(f"Error loading base model: {e}")
|
| 30 |
+
raise
|
| 31 |
+
|
| 32 |
+
# Load adapter
|
| 33 |
+
try:
|
| 34 |
+
model = PeftModel.from_pretrained(
|
| 35 |
+
base_model, adapter_path, offload_dir=offload_dir if device == "cpu" else None
|
| 36 |
+
)
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error loading adapter: {e}")
|
| 39 |
+
raise
|
| 40 |
+
|
| 41 |
+
# Load tokenizer
|
| 42 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
| 43 |
|
| 44 |
+
# Load pipeline once for better performance
|
| 45 |
+
text_pipe = pipeline(
|
| 46 |
+
task="text-generation",
|
| 47 |
+
model=model,
|
| 48 |
+
tokenizer=tokenizer,
|
| 49 |
+
max_length=512,
|
| 50 |
+
device=0 if device == "cuda" else -1
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Root endpoint for testing
|
| 54 |
@app.get("/")
|
| 55 |
async def root():
|
| 56 |
return {"message": "Model is running! Use /generate/ for text generation."}
|
| 57 |
+
|
| 58 |
+
# Text generation endpoint
|
| 59 |
@app.post("/generate/")
|
| 60 |
async def generate_text(prompt: str):
|
| 61 |
+
result = text_pipe(f"<s>[INST] {prompt} [/INST]")
|
| 62 |
+
return {"response": result[0]['generated_text']}
|
|
|