Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,230 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
from PIL import Image
|
| 4 |
import traceback
|
| 5 |
import time
|
| 6 |
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
# Models
|
| 9 |
models = [
|
| 10 |
("Ateeqq/ai-vs-human-image-detector", "ateeq"),
|
| 11 |
("umm-maybe/AI-image-detector", "umm_maybe"),
|
| 12 |
("dima806/ai_vs_human_generated_image_detection", "dimma"),
|
| 13 |
]
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
try:
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
except Exception as e:
|
| 21 |
-
print(f"Error loading {model_id}: {e}")
|
| 22 |
|
| 23 |
-
|
| 24 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
results = []
|
| 26 |
-
for
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
if "ai" in label or "fake" in label:
|
| 35 |
verdict = f"🧠 AI-Generated ({score:.1f}% confidence)"
|
|
@@ -38,28 +233,89 @@ def predict_image(image: Image.Image):
|
|
| 38 |
verdict = f"🧍 Human-Made ({score:.1f}% confidence)"
|
| 39 |
color = "#4CAF50"
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
html = f"""
|
| 42 |
<div class='result-box' style="
|
| 43 |
background: linear-gradient(135deg, {color}33, #1a1a1a);
|
| 44 |
border: 2px solid {color};
|
| 45 |
border-radius: 15px;
|
| 46 |
-
padding:
|
| 47 |
text-align: center;
|
| 48 |
color: white;
|
| 49 |
-
font-size:
|
| 50 |
font-weight: 600;
|
| 51 |
box-shadow: 0 0 20px {color}55;
|
| 52 |
animation: fadeIn 0.6s ease-in-out;
|
| 53 |
">
|
| 54 |
{verdict}
|
|
|
|
|
|
|
|
|
|
| 55 |
</div>
|
| 56 |
"""
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
traceback.print_exc()
|
| 60 |
-
return f"<div style='color:red;'>Error analyzing image: {str(e)}</div>"
|
| 61 |
|
| 62 |
-
#
|
| 63 |
css = """
|
| 64 |
body, .gradio-container {
|
| 65 |
font-family: 'Poppins', sans-serif !important;
|
|
@@ -104,7 +360,7 @@ h1 {
|
|
| 104 |
"""
|
| 105 |
|
| 106 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 107 |
-
gr.Markdown("<h1>🔍 AI Image Detector</h1>")
|
| 108 |
|
| 109 |
with gr.Row():
|
| 110 |
with gr.Column(scale=1):
|
|
@@ -112,20 +368,39 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 112 |
analyze_button = gr.Button("Analyze", variant="primary")
|
| 113 |
clear_button = gr.Button("Clear", variant="secondary")
|
| 114 |
loader = gr.HTML("")
|
|
|
|
|
|
|
| 115 |
with gr.Column(scale=1):
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
def analyze(img):
|
| 119 |
if img is None:
|
| 120 |
-
return (
|
| 121 |
loader_html = "<div id='pulse-loader'></div>"
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
analyze_button.click(analyze, inputs=image_input, outputs=[
|
| 129 |
-
clear_button.click(lambda: ("", ""), outputs=[
|
| 130 |
|
| 131 |
demo.launch()
|
|
|
|
| 1 |
+
# unreal_explain_gradio.py
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
|
| 4 |
from PIL import Image
|
| 5 |
import traceback
|
| 6 |
import time
|
| 7 |
import threading
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import numpy as np
|
| 11 |
+
import io
|
| 12 |
+
import base64
|
| 13 |
+
import cv2
|
| 14 |
+
|
| 15 |
+
# ---------- Configuration ----------
|
| 16 |
+
# If any of your Hugging Face models are private, set HF_TOKEN = "<YOUR_TOKEN>"
|
| 17 |
+
HF_TOKEN = None # or "hf_xxx" if needed
|
| 18 |
|
|
|
|
| 19 |
models = [
|
| 20 |
("Ateeqq/ai-vs-human-image-detector", "ateeq"),
|
| 21 |
("umm-maybe/AI-image-detector", "umm_maybe"),
|
| 22 |
("dima806/ai_vs_human_generated_image_detection", "dimma"),
|
| 23 |
]
|
| 24 |
|
| 25 |
+
# ---------- Helper functions for explainability ----------
|
| 26 |
+
def find_last_conv(module):
|
| 27 |
+
last = None
|
| 28 |
+
for name, m in module.named_modules():
|
| 29 |
+
if isinstance(m, torch.nn.Conv2d):
|
| 30 |
+
last = m
|
| 31 |
+
return last
|
| 32 |
+
|
| 33 |
+
class GradCAM:
|
| 34 |
+
def __init__(self, model, target_layer):
|
| 35 |
+
self.model = model
|
| 36 |
+
self.target_layer = target_layer
|
| 37 |
+
self.activations = None
|
| 38 |
+
self.gradients = None
|
| 39 |
+
# register hooks
|
| 40 |
+
target_layer.register_forward_hook(self._save_activation)
|
| 41 |
+
# backward hook signature differs by torch version
|
| 42 |
+
try:
|
| 43 |
+
target_layer.register_backward_hook(self._save_gradient)
|
| 44 |
+
except Exception:
|
| 45 |
+
target_layer.register_full_backward_hook(self._save_gradient)
|
| 46 |
+
|
| 47 |
+
def _save_activation(self, module, input, output):
|
| 48 |
+
self.activations = output.detach()
|
| 49 |
+
|
| 50 |
+
def _save_gradient(self, module, grad_input, grad_output):
|
| 51 |
+
# grad_output can be tuple
|
| 52 |
+
self.gradients = grad_output[0].detach()
|
| 53 |
+
|
| 54 |
+
def __call__(self, input_tensor, class_idx=None):
|
| 55 |
+
self.activations = None
|
| 56 |
+
self.gradients = None
|
| 57 |
+
# forward
|
| 58 |
+
logits = self.model(input_tensor.unsqueeze(0))
|
| 59 |
+
# transformers models return objects, handle both
|
| 60 |
+
if hasattr(logits, "logits"):
|
| 61 |
+
logits_tensor = logits.logits
|
| 62 |
+
else:
|
| 63 |
+
logits_tensor = logits
|
| 64 |
+
if class_idx is None:
|
| 65 |
+
class_idx = int(torch.argmax(logits_tensor, dim=1).item())
|
| 66 |
+
# backward
|
| 67 |
+
self.model.zero_grad()
|
| 68 |
+
score = logits_tensor[0, class_idx]
|
| 69 |
+
score.backward(retain_graph=False)
|
| 70 |
+
# compute weights
|
| 71 |
+
pooled_grads = torch.mean(self.gradients[0], dim=(1,2)) # C
|
| 72 |
+
activ = self.activations[0].cpu()
|
| 73 |
+
for i in range(activ.shape[0]):
|
| 74 |
+
activ[i, :, :] *= pooled_grads[i].cpu()
|
| 75 |
+
heatmap = torch.sum(activ, dim=0).cpu().numpy()
|
| 76 |
+
heatmap = np.maximum(heatmap, 0)
|
| 77 |
+
heatmap = heatmap - np.min(heatmap)
|
| 78 |
+
denom = (np.max(heatmap) + 1e-8)
|
| 79 |
+
heatmap = heatmap / denom
|
| 80 |
+
return heatmap, int(class_idx), logits_tensor
|
| 81 |
+
|
| 82 |
+
def overlay_heatmap_on_pil(orig_pil, heatmap, alpha=0.45):
|
| 83 |
+
orig = np.array(orig_pil.convert("RGB"))
|
| 84 |
+
heatmap_resized = cv2.resize(heatmap, (orig.shape[1], orig.shape[0]))
|
| 85 |
+
heatmap_u8 = np.uint8(255 * heatmap_resized)
|
| 86 |
+
colored = cv2.applyColorMap(heatmap_u8, cv2.COLORMAP_JET)
|
| 87 |
+
colored = cv2.cvtColor(colored, cv2.COLOR_BGR2RGB)
|
| 88 |
+
overlay = np.uint8(orig * (1 - alpha) + colored * alpha)
|
| 89 |
+
return Image.fromarray(overlay)
|
| 90 |
+
|
| 91 |
+
# Attention rollout for ViT-style models
|
| 92 |
+
def attention_rollout_from_attentions(attentions, discard_ratio=0.9):
|
| 93 |
+
"""
|
| 94 |
+
attentions: tuple/list of tensors, each shape (batch, heads, seq, seq)
|
| 95 |
+
returns token-to-token rollout matrix shape (seq, seq)
|
| 96 |
+
"""
|
| 97 |
+
# Convert to numpy arrays, avg heads
|
| 98 |
+
result = None
|
| 99 |
+
for attn in attentions:
|
| 100 |
+
# attn shape (batch, heads, seq, seq)
|
| 101 |
+
a = attn[0].mean(0).detach().cpu().numpy() # (seq, seq)
|
| 102 |
+
# optionally remove low weights
|
| 103 |
+
a = np.maximum(a, 0)
|
| 104 |
+
a = a / (a.sum(-1, keepdims=True) + 1e-8)
|
| 105 |
+
if result is None:
|
| 106 |
+
result = a
|
| 107 |
+
else:
|
| 108 |
+
result = a @ result
|
| 109 |
+
return result
|
| 110 |
+
|
| 111 |
+
def vit_attention_heatmap(processor, model, image: Image.Image):
|
| 112 |
+
# preprocess
|
| 113 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 114 |
+
# call model with output_attentions=True
|
| 115 |
+
outputs = model(**inputs, output_attentions=True)
|
| 116 |
+
if not hasattr(outputs, "attentions") or outputs.attentions is None:
|
| 117 |
+
return None
|
| 118 |
+
rollout = attention_rollout_from_attentions(outputs.attentions)
|
| 119 |
+
# rollout shape (seq, seq). First token is CLS — we use CLS attention to patches.
|
| 120 |
+
cls_attention = rollout[0, 1:] # skip CLS->CLS token
|
| 121 |
+
# map patch attention to image heatmap
|
| 122 |
+
# get image size and patch grid shape from processor/model config
|
| 123 |
+
try:
|
| 124 |
+
config = model.config
|
| 125 |
+
if hasattr(config, "image_size"):
|
| 126 |
+
image_size = config.image_size
|
| 127 |
+
else:
|
| 128 |
+
image_size = processor.size.get("shortest_edge", 224) if hasattr(processor, "size") else 224
|
| 129 |
+
patch_size = config.patch_size if hasattr(config, "patch_size") else 16
|
| 130 |
+
except Exception:
|
| 131 |
+
image_size = 224
|
| 132 |
+
patch_size = 16
|
| 133 |
+
grid_size = int(image_size // patch_size)
|
| 134 |
+
# if tokens don't match product, try sqrt
|
| 135 |
+
if cls_attention.shape[0] != grid_size * grid_size:
|
| 136 |
+
# fallback: reshape by nearest square
|
| 137 |
+
n = int(np.sqrt(cls_attention.shape[0]))
|
| 138 |
+
grid_size = n
|
| 139 |
+
heatmap = cls_attention.reshape(grid_size, grid_size)
|
| 140 |
+
heatmap = heatmap - heatmap.min()
|
| 141 |
+
heatmap = heatmap / (heatmap.max() + 1e-8)
|
| 142 |
+
return heatmap
|
| 143 |
+
|
| 144 |
+
# ---------- Load pipelines and also underlying models/processors ----------
|
| 145 |
+
pipes = [] # (model_id, pipeline)
|
| 146 |
+
hf_models = {} # model_id -> (processor, model, explain_type)
|
| 147 |
+
|
| 148 |
+
for model_id, short in models:
|
| 149 |
try:
|
| 150 |
+
p = pipeline("image-classification", model=model_id, use_auth_token=HF_TOKEN)
|
| 151 |
+
pipes.append((model_id, p))
|
| 152 |
+
print(f"Loaded pipeline {model_id}")
|
| 153 |
except Exception as e:
|
| 154 |
+
print(f"Error loading pipeline for {model_id}: {e}")
|
| 155 |
|
| 156 |
+
# try to load processor + raw model for explainability
|
| 157 |
try:
|
| 158 |
+
processor = AutoImageProcessor.from_pretrained(model_id, use_auth_token=HF_TOKEN)
|
| 159 |
+
except Exception:
|
| 160 |
+
# older HF spacing: AutoFeatureExtractor fallback
|
| 161 |
+
try:
|
| 162 |
+
from transformers import AutoFeatureExtractor
|
| 163 |
+
processor = AutoFeatureExtractor.from_pretrained(model_id, use_auth_token=HF_TOKEN)
|
| 164 |
+
except Exception:
|
| 165 |
+
processor = None
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
raw_model = AutoModelForImageClassification.from_pretrained(model_id, use_auth_token=HF_TOKEN)
|
| 169 |
+
raw_model.eval()
|
| 170 |
+
# attempt to detect conv layers
|
| 171 |
+
# try to find a backbone / base model
|
| 172 |
+
base = None
|
| 173 |
+
for candidate in ("base_model", "backbone", "model", "vit", "resnet", "conv_stem"):
|
| 174 |
+
if hasattr(raw_model, candidate):
|
| 175 |
+
base = getattr(raw_model, candidate)
|
| 176 |
+
break
|
| 177 |
+
if base is None:
|
| 178 |
+
base = raw_model
|
| 179 |
+
|
| 180 |
+
last_conv = find_last_conv(base)
|
| 181 |
+
if last_conv is not None:
|
| 182 |
+
explain_type = "gradcam"
|
| 183 |
+
explain_helper = GradCAM(raw_model, last_conv)
|
| 184 |
+
print(f"{model_id} -> Grad-CAM available")
|
| 185 |
+
else:
|
| 186 |
+
# try transformer attention route
|
| 187 |
+
# check config for is_vit
|
| 188 |
+
cfg = raw_model.config
|
| 189 |
+
if getattr(cfg, "architectures", None) and any("ViT" in a or "VisionTransformer" in a for a in cfg.architectures):
|
| 190 |
+
explain_type = "vit"
|
| 191 |
+
explain_helper = None
|
| 192 |
+
print(f"{model_id} -> ViT | will use attention rollout")
|
| 193 |
+
else:
|
| 194 |
+
# fallback: no explainability
|
| 195 |
+
explain_type = "none"
|
| 196 |
+
explain_helper = None
|
| 197 |
+
print(f"{model_id} -> No explainability (no convs and not ViT)")
|
| 198 |
+
except Exception as e:
|
| 199 |
+
print(f"Couldn't load raw hf model for {model_id}: {e}")
|
| 200 |
+
raw_model = None
|
| 201 |
+
processor = None
|
| 202 |
+
explain_type = "none"
|
| 203 |
+
explain_helper = None
|
| 204 |
+
|
| 205 |
+
hf_models[model_id] = {
|
| 206 |
+
"processor": processor,
|
| 207 |
+
"model": raw_model,
|
| 208 |
+
"explain_type": explain_type,
|
| 209 |
+
"helper": explain_helper
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
# ---------- original predict function updated to produce overlay ----------
|
| 213 |
+
def predict_image_with_explain(image: Image.Image):
|
| 214 |
+
try:
|
| 215 |
+
# run all pipelines to get consensus / first result for UI
|
| 216 |
results = []
|
| 217 |
+
for model_id, pipe in pipes:
|
| 218 |
+
try:
|
| 219 |
+
res = pipe(image)[0]
|
| 220 |
+
results.append((model_id, res))
|
| 221 |
+
except Exception as e:
|
| 222 |
+
results.append((model_id, {"label": "error", "score": 0.0}))
|
| 223 |
|
| 224 |
+
# pick first result for the main verdict (like before)
|
| 225 |
+
final_model_id, final_res = results[0]
|
| 226 |
+
label = final_res.get("label", "").lower()
|
| 227 |
+
score = final_res.get("score", 0.0) * 100
|
| 228 |
|
| 229 |
if "ai" in label or "fake" in label:
|
| 230 |
verdict = f"🧠 AI-Generated ({score:.1f}% confidence)"
|
|
|
|
| 233 |
verdict = f"🧍 Human-Made ({score:.1f}% confidence)"
|
| 234 |
color = "#4CAF50"
|
| 235 |
|
| 236 |
+
# Try to compute explainability overlay from the corresponding HF model if available
|
| 237 |
+
explain_entry = hf_models.get(final_model_id)
|
| 238 |
+
overlay_data_uri = None
|
| 239 |
+
explain_reason = None
|
| 240 |
+
|
| 241 |
+
if explain_entry and explain_entry["explain_type"] == "gradcam" and explain_entry["helper"] is not None:
|
| 242 |
+
try:
|
| 243 |
+
# preprocess: use processor if present, else fallback to torchvision transforms
|
| 244 |
+
proc = explain_entry["processor"]
|
| 245 |
+
raw_model = explain_entry["model"]
|
| 246 |
+
if proc is not None:
|
| 247 |
+
inputs = proc(images=image, return_tensors="pt")
|
| 248 |
+
input_tensor = inputs["pixel_values"][0] if "pixel_values" in inputs else inputs["input_tensor"][0]
|
| 249 |
+
else:
|
| 250 |
+
# fallback resize + normalize similar to common models
|
| 251 |
+
from torchvision import transforms
|
| 252 |
+
pre = transforms.Compose([
|
| 253 |
+
transforms.Resize((224,224)),
|
| 254 |
+
transforms.ToTensor(),
|
| 255 |
+
transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
|
| 256 |
+
])
|
| 257 |
+
input_tensor = pre(image)
|
| 258 |
+
|
| 259 |
+
grad_helper = explain_entry["helper"]
|
| 260 |
+
heatmap, class_idx, logits = grad_helper(input_tensor)
|
| 261 |
+
# overlay
|
| 262 |
+
overlay_img = overlay_heatmap_on_pil(image, heatmap, alpha=0.45)
|
| 263 |
+
buf = io.BytesIO()
|
| 264 |
+
overlay_img.save(buf, format="PNG")
|
| 265 |
+
overlay_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
|
| 266 |
+
overlay_data_uri = "data:image/png;base64," + overlay_b64
|
| 267 |
+
explain_reason = "Grad-CAM heatmap (activations)"
|
| 268 |
+
except Exception as e:
|
| 269 |
+
traceback.print_exc()
|
| 270 |
+
explain_reason = f"Grad-CAM failed: {e}"
|
| 271 |
+
|
| 272 |
+
elif explain_entry and explain_entry["explain_type"] == "vit" and explain_entry["model"] is not None:
|
| 273 |
+
try:
|
| 274 |
+
proc = explain_entry["processor"]
|
| 275 |
+
raw_model = explain_entry["model"]
|
| 276 |
+
heatmap = vit_attention_heatmap(proc, raw_model, image)
|
| 277 |
+
if heatmap is not None:
|
| 278 |
+
overlay_img = overlay_heatmap_on_pil(image, heatmap, alpha=0.45)
|
| 279 |
+
buf = io.BytesIO()
|
| 280 |
+
overlay_img.save(buf, format="PNG")
|
| 281 |
+
overlay_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
|
| 282 |
+
overlay_data_uri = "data:image/png;base64," + overlay_b64
|
| 283 |
+
explain_reason = "ViT attention rollout heatmap"
|
| 284 |
+
except Exception as e:
|
| 285 |
+
traceback.print_exc()
|
| 286 |
+
explain_reason = f"ViT rollout failed: {e}"
|
| 287 |
+
|
| 288 |
+
# Build HTML for verdict box
|
| 289 |
html = f"""
|
| 290 |
<div class='result-box' style="
|
| 291 |
background: linear-gradient(135deg, {color}33, #1a1a1a);
|
| 292 |
border: 2px solid {color};
|
| 293 |
border-radius: 15px;
|
| 294 |
+
padding: 20px;
|
| 295 |
text-align: center;
|
| 296 |
color: white;
|
| 297 |
+
font-size: 18px;
|
| 298 |
font-weight: 600;
|
| 299 |
box-shadow: 0 0 20px {color}55;
|
| 300 |
animation: fadeIn 0.6s ease-in-out;
|
| 301 |
">
|
| 302 |
{verdict}
|
| 303 |
+
<div style="font-size:12px; margin-top:8px; font-weight:400; opacity:0.9;">
|
| 304 |
+
Model: <b>{final_model_id}</b> — Score by model: {score:.1f}%
|
| 305 |
+
</div>
|
| 306 |
</div>
|
| 307 |
"""
|
| 308 |
+
|
| 309 |
+
return {
|
| 310 |
+
"html": html,
|
| 311 |
+
"overlay": overlay_data_uri,
|
| 312 |
+
"explain_reason": explain_reason or ""
|
| 313 |
+
}
|
| 314 |
except Exception as e:
|
| 315 |
traceback.print_exc()
|
| 316 |
+
return {"html": f"<div style='color:red;'>Error analyzing image: {str(e)}</div>", "overlay": None, "explain_reason": ""}
|
| 317 |
|
| 318 |
+
# ---------- Gradio UI ----------
|
| 319 |
css = """
|
| 320 |
body, .gradio-container {
|
| 321 |
font-family: 'Poppins', sans-serif !important;
|
|
|
|
| 360 |
"""
|
| 361 |
|
| 362 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 363 |
+
gr.Markdown("<h1>🔍 AI Image Detector w/ Explainability</h1>")
|
| 364 |
|
| 365 |
with gr.Row():
|
| 366 |
with gr.Column(scale=1):
|
|
|
|
| 368 |
analyze_button = gr.Button("Analyze", variant="primary")
|
| 369 |
clear_button = gr.Button("Clear", variant="secondary")
|
| 370 |
loader = gr.HTML("")
|
| 371 |
+
gr.Markdown("Opacity:")
|
| 372 |
+
opacity = gr.Slider(minimum=0, maximum=1, value=0.6, step=0.05)
|
| 373 |
with gr.Column(scale=1):
|
| 374 |
+
# show original image plus overlay using HTML
|
| 375 |
+
image_display = gr.Image(type="pil", label="Original / Overlay", interactive=False)
|
| 376 |
+
output_html = gr.HTML(label="Result")
|
| 377 |
+
explanation_text = gr.Textbox(label="Explainability", interactive=False)
|
| 378 |
|
| 379 |
+
def analyze(img, op):
|
| 380 |
if img is None:
|
| 381 |
+
return (None, "<div style='color:red;'>Please upload an image first!</div>", "")
|
| 382 |
loader_html = "<div id='pulse-loader'></div>"
|
| 383 |
+
# show loader
|
| 384 |
+
yield (None, loader_html, "")
|
| 385 |
+
# run analysis
|
| 386 |
+
out = predict_image_with_explain(img)
|
| 387 |
+
# overlay image if available
|
| 388 |
+
overlay_uri = out.get("overlay")
|
| 389 |
+
if overlay_uri:
|
| 390 |
+
# convert data uri to PIL for gr.Image output
|
| 391 |
+
header, b64 = overlay_uri.split(",", 1)
|
| 392 |
+
overlay_bytes = base64.b64decode(b64)
|
| 393 |
+
overlay_img = Image.open(io.BytesIO(overlay_bytes)).convert("RGB")
|
| 394 |
+
else:
|
| 395 |
+
overlay_img = img # fallback: show orig
|
| 396 |
|
| 397 |
+
# explanation text
|
| 398 |
+
explain_reason = out.get("explain_reason", "")
|
| 399 |
+
html = out.get("html", "")
|
| 400 |
+
# yield overlay image, html, explanation string
|
| 401 |
+
yield (overlay_img, html, explain_reason)
|
| 402 |
|
| 403 |
+
analyze_button.click(analyze, inputs=[image_input, opacity], outputs=[image_display, output_html, explanation_text])
|
| 404 |
+
clear_button.click(lambda: (None, "", ""), outputs=[image_display, output_html, explanation_text])
|
| 405 |
|
| 406 |
demo.launch()
|