Spaces:
Sleeping
Sleeping
File size: 20,845 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
from .generics import _sum_wo_nan
"""
In order to shorten the length of the variables,
the general convention in this file is to let:
- I for a predicted event (start, stop),
- Is for a list of predicted events,
- J for a ground truth event,
- Js for a list of ground truth events.
"""
def interval_length(J = (1,2)):
"""
Length of an interval
:param J: couple representating the start and stop of an interval, or None
:return: length of the interval, and 0 for a None interval
"""
if J is None:
return(0)
return(J[1] - J[0])
def sum_interval_lengths(Is = [(1,2),(3,4),(5,6)]):
"""
Sum of length of the intervals
:param Is: list of intervals represented by starts and stops
:return: sum of the interval length
"""
return(sum([interval_length(I) for I in Is]))
def interval_intersection(I = (1, 3), J = (2, 4)):
"""
Intersection between two intervals I and J
I and J should be either empty or represent a positive interval (no point)
:param I: an interval represented by start and stop
:param J: a second interval of the same form
:return: an interval representing the start and stop of the intersection (or None if empty)
"""
if I is None:
return(None)
if J is None:
return(None)
I_inter_J = (max(I[0], J[0]), min(I[1], J[1]))
if I_inter_J[0] >= I_inter_J[1]:
return(None)
else:
return(I_inter_J)
def interval_subset(I = (1, 3), J = (0, 6)):
"""
Checks whether I is a subset of J
:param I: an non empty interval represented by start and stop
:param J: a second non empty interval of the same form
:return: True if I is a subset of J
"""
if (I[0] >= J[0]) and (I[1] <= J[1]):
return True
else:
return False
def cut_into_three_func(I, J):
"""
Cut an interval I into a partition of 3 subsets:
the elements before J,
the elements belonging to J,
and the elements after J
:param I: an interval represented by start and stop, or None for an empty one
:param J: a non empty interval
:return: a triplet of three intervals, each represented by either (start, stop) or None
"""
if I is None:
return((None, None, None))
I_inter_J = interval_intersection(I, J)
if I == I_inter_J:
I_before = None
I_after = None
elif I[1] <= J[0]:
I_before = I
I_after = None
elif I[0] >= J[1]:
I_before = None
I_after = I
elif (I[0] <= J[0]) and (I[1] >= J[1]):
I_before = (I[0], I_inter_J[0])
I_after = (I_inter_J[1], I[1])
elif I[0] <= J[0]:
I_before = (I[0], I_inter_J[0])
I_after = None
elif I[1] >= J[1]:
I_before = None
I_after = (I_inter_J[1], I[1])
else:
raise ValueError('unexpected unconsidered case')
return(I_before, I_inter_J, I_after)
def get_pivot_j(I, J):
"""
Get the single point of J that is the closest to I, called 'pivot' here,
with the requirement that I should be outside J
:param I: a non empty interval (start, stop)
:param J: another non empty interval, with empty intersection with I
:return: the element j of J that is the closest to I
"""
if interval_intersection(I, J) is not None:
raise ValueError('I and J should have a void intersection')
j_pivot = None # j_pivot is a border of J
if max(I) <= min(J):
j_pivot = min(J)
elif min(I) >= max(J):
j_pivot = max(J)
else:
raise ValueError('I should be outside J')
return(j_pivot)
def integral_mini_interval(I, J):
"""
In the specific case where interval I is located outside J,
integral of distance from x to J over the interval x \in I.
This is the *integral* i.e. the sum.
It's not the mean (not divided by the length of I yet)
:param I: a interval (start, stop), or None
:param J: a non empty interval, with empty intersection with I
:return: the integral of distances d(x, J) over x \in I
"""
if I is None:
return(0)
j_pivot = get_pivot_j(I, J)
a = min(I)
b = max(I)
return((b-a)*abs((j_pivot - (a+b)/2)))
def integral_interval_distance(I, J):
"""
For any non empty intervals I, J, compute the
integral of distance from x to J over the interval x \in I.
This is the *integral* i.e. the sum.
It's not the mean (not divided by the length of I yet)
The interval I can intersect J or not
:param I: a interval (start, stop), or None
:param J: a non empty interval
:return: the integral of distances d(x, J) over x \in I
"""
# I and J are single intervals (not generic sets)
# I is a predicted interval in the range of affiliation of J
def f(I_cut):
return(integral_mini_interval(I_cut, J))
# If I_middle is fully included into J, it is
# the distance to J is always 0
def f0(I_middle):
return(0)
cut_into_three = cut_into_three_func(I, J)
# Distance for now, not the mean:
# Distance left: Between cut_into_three[0] and the point min(J)
d_left = f(cut_into_three[0])
# Distance middle: Between cut_into_three[1] = I inter J, and J
d_middle = f0(cut_into_three[1])
# Distance right: Between cut_into_three[2] and the point max(J)
d_right = f(cut_into_three[2])
# It's an integral so summable
return(d_left + d_middle + d_right)
def integral_mini_interval_P_CDFmethod__min_piece(I, J, E):
"""
Helper of `integral_mini_interval_Pprecision_CDFmethod`
In the specific case where interval I is located outside J,
compute the integral $\int_{d_min}^{d_max} \min(m, x) dx$, with:
- m the smallest distance from J to E,
- d_min the smallest distance d(x, J) from x \in I to J
- d_max the largest distance d(x, J) from x \in I to J
:param I: a single predicted interval, a non empty interval (start, stop)
:param J: ground truth interval, a non empty interval, with empty intersection with I
:param E: the affiliation/influence zone for J, represented as a couple (start, stop)
:return: the integral $\int_{d_min}^{d_max} \min(m, x) dx$
"""
if interval_intersection(I, J) is not None:
raise ValueError('I and J should have a void intersection')
if not interval_subset(J, E):
raise ValueError('J should be included in E')
if not interval_subset(I, E):
raise ValueError('I should be included in E')
e_min = min(E)
j_min = min(J)
j_max = max(J)
e_max = max(E)
i_min = min(I)
i_max = max(I)
d_min = max(i_min - j_max, j_min - i_max)
d_max = max(i_max - j_max, j_min - i_min)
m = min(j_min - e_min, e_max - j_max)
A = min(d_max, m)**2 - min(d_min, m)**2
B = max(d_max, m) - max(d_min, m)
C = (1/2)*A + m*B
return(C)
def integral_mini_interval_Pprecision_CDFmethod(I, J, E):
"""
Integral of the probability of distances over the interval I.
In the specific case where interval I is located outside J,
compute the integral $\int_{x \in I} Fbar(dist(x,J)) dx$.
This is the *integral* i.e. the sum (not the mean)
:param I: a single predicted interval, a non empty interval (start, stop)
:param J: ground truth interval, a non empty interval, with empty intersection with I
:param E: the affiliation/influence zone for J, represented as a couple (start, stop)
:return: the integral $\int_{x \in I} Fbar(dist(x,J)) dx$
"""
integral_min_piece = integral_mini_interval_P_CDFmethod__min_piece(I, J, E)
e_min = min(E)
j_min = min(J)
j_max = max(J)
e_max = max(E)
i_min = min(I)
i_max = max(I)
d_min = max(i_min - j_max, j_min - i_max)
d_max = max(i_max - j_max, j_min - i_min)
integral_linear_piece = (1/2)*(d_max**2 - d_min**2)
integral_remaining_piece = (j_max - j_min)*(i_max - i_min)
DeltaI = i_max - i_min
DeltaE = e_max - e_min
output = DeltaI - (1/DeltaE)*(integral_min_piece + integral_linear_piece + integral_remaining_piece)
return(output)
def integral_interval_probaCDF_precision(I, J, E):
"""
Integral of the probability of distances over the interval I.
Compute the integral $\int_{x \in I} Fbar(dist(x,J)) dx$.
This is the *integral* i.e. the sum (not the mean)
:param I: a single (non empty) predicted interval in the zone of affiliation of J
:param J: ground truth interval
:param E: affiliation/influence zone for J
:return: the integral $\int_{x \in I} Fbar(dist(x,J)) dx$
"""
# I and J are single intervals (not generic sets)
def f(I_cut):
if I_cut is None:
return(0)
else:
return(integral_mini_interval_Pprecision_CDFmethod(I_cut, J, E))
# If I_middle is fully included into J, it is
# integral of 1 on the interval I_middle, so it's |I_middle|
def f0(I_middle):
if I_middle is None:
return(0)
else:
return(max(I_middle) - min(I_middle))
cut_into_three = cut_into_three_func(I, J)
# Distance for now, not the mean:
# Distance left: Between cut_into_three[0] and the point min(J)
d_left = f(cut_into_three[0])
# Distance middle: Between cut_into_three[1] = I inter J, and J
d_middle = f0(cut_into_three[1])
# Distance right: Between cut_into_three[2] and the point max(J)
d_right = f(cut_into_three[2])
# It's an integral so summable
return(d_left + d_middle + d_right)
def cut_J_based_on_mean_func(J, e_mean):
"""
Helper function for the recall.
Partition J into two intervals: before and after e_mean
(e_mean represents the center element of E the zone of affiliation)
:param J: ground truth interval
:param e_mean: a float number (center value of E)
:return: a couple partitionning J into (J_before, J_after)
"""
if J is None:
J_before = None
J_after = None
elif e_mean >= max(J):
J_before = J
J_after = None
elif e_mean <= min(J):
J_before = None
J_after = J
else: # e_mean is across J
J_before = (min(J), e_mean)
J_after = (e_mean, max(J))
return((J_before, J_after))
def integral_mini_interval_Precall_CDFmethod(I, J, E):
"""
Integral of the probability of distances over the interval J.
In the specific case where interval J is located outside I,
compute the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$.
This is the *integral* i.e. the sum (not the mean)
:param I: a single (non empty) predicted interval
:param J: ground truth (non empty) interval, with empty intersection with I
:param E: the affiliation/influence zone for J, represented as a couple (start, stop)
:return: the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$
"""
# The interval J should be located outside I
# (so it's either the left piece or the right piece w.r.t I)
i_pivot = get_pivot_j(J, I)
e_min = min(E)
e_max = max(E)
e_mean = (e_min + e_max) / 2
# If i_pivot is outside E (it's possible), then
# the distance is worst that any random element within E,
# so we set the recall to 0
if i_pivot <= min(E):
return(0)
elif i_pivot >= max(E):
return(0)
# Otherwise, we have at least i_pivot in E and so d < M so min(d,M)=d
cut_J_based_on_e_mean = cut_J_based_on_mean_func(J, e_mean)
J_before = cut_J_based_on_e_mean[0]
J_after = cut_J_based_on_e_mean[1]
iemin_mean = (e_min + i_pivot)/2
cut_Jbefore_based_on_iemin_mean = cut_J_based_on_mean_func(J_before, iemin_mean)
J_before_closeE = cut_Jbefore_based_on_iemin_mean[0] # before e_mean and closer to e_min than i_pivot ~ J_before_before
J_before_closeI = cut_Jbefore_based_on_iemin_mean[1] # before e_mean and closer to i_pivot than e_min ~ J_before_after
iemax_mean = (e_max + i_pivot)/2
cut_Jafter_based_on_iemax_mean = cut_J_based_on_mean_func(J_after, iemax_mean)
J_after_closeI = cut_Jafter_based_on_iemax_mean[0] # after e_mean and closer to i_pivot than e_max ~ J_after_before
J_after_closeE = cut_Jafter_based_on_iemax_mean[1] # after e_mean and closer to e_max than i_pivot ~ J_after_after
if J_before_closeE is not None:
j_before_before_min = min(J_before_closeE) # == min(J)
j_before_before_max = max(J_before_closeE)
else:
j_before_before_min = math.nan
j_before_before_max = math.nan
if J_before_closeI is not None:
j_before_after_min = min(J_before_closeI) # == j_before_before_max if existing
j_before_after_max = max(J_before_closeI) # == max(J_before)
else:
j_before_after_min = math.nan
j_before_after_max = math.nan
if J_after_closeI is not None:
j_after_before_min = min(J_after_closeI) # == min(J_after)
j_after_before_max = max(J_after_closeI)
else:
j_after_before_min = math.nan
j_after_before_max = math.nan
if J_after_closeE is not None:
j_after_after_min = min(J_after_closeE) # == j_after_before_max if existing
j_after_after_max = max(J_after_closeE) # == max(J)
else:
j_after_after_min = math.nan
j_after_after_max = math.nan
# <-- J_before_closeE --> <-- J_before_closeI --> <-- J_after_closeI --> <-- J_after_closeE -->
# j_bb_min j_bb_max j_ba_min j_ba_max j_ab_min j_ab_max j_aa_min j_aa_max
# (with `b` for before and `a` for after in the previous variable names)
# vs e_mean m = min(t-e_min, e_max-t) d=|i_pivot-t| min(d,m) \int min(d,m)dt \int d dt \int_(min(d,m)+d)dt \int_{t \in J}(min(d,m)+d)dt
# Case J_before_closeE & i_pivot after J before t-e_min i_pivot-t min(i_pivot-t,t-e_min) = t-e_min t^2/2-e_min*t i_pivot*t-t^2/2 t^2/2-e_min*t+i_pivot*t-t^2/2 = (i_pivot-e_min)*t (i_pivot-e_min)*tB - (i_pivot-e_min)*tA = (i_pivot-e_min)*(tB-tA)
# Case J_before_closeI & i_pivot after J before t-e_min i_pivot-t min(i_pivot-t,t-e_min) = i_pivot-t i_pivot*t-t^2/2 i_pivot*t-t^2/2 i_pivot*t-t^2/2+i_pivot*t-t^2/2 = 2*i_pivot*t-t^2 2*i_pivot*tB-tB^2 - 2*i_pivot*tA + tA^2 = 2*i_pivot*(tB-tA) - (tB^2 - tA^2)
# Case J_after_closeI & i_pivot after J after e_max-t i_pivot-t min(i_pivot-t,e_max-t) = i_pivot-t i_pivot*t-t^2/2 i_pivot*t-t^2/2 i_pivot*t-t^2/2+i_pivot*t-t^2/2 = 2*i_pivot*t-t^2 2*i_pivot*tB-tB^2 - 2*i_pivot*tA + tA^2 = 2*i_pivot*(tB-tA) - (tB^2 - tA^2)
# Case J_after_closeE & i_pivot after J after e_max-t i_pivot-t min(i_pivot-t,e_max-t) = e_max-t e_max*t-t^2/2 i_pivot*t-t^2/2 e_max*t-t^2/2+i_pivot*t-t^2/2 = (e_max+i_pivot)*t-t^2 (e_max+i_pivot)*tB-tB^2 - (e_max+i_pivot)*tA + tA^2 = (e_max+i_pivot)*(tB-tA) - (tB^2 - tA^2)
#
# Case J_before_closeE & i_pivot before J before t-e_min t-i_pivot min(t-i_pivot,t-e_min) = t-e_min t^2/2-e_min*t t^2/2-i_pivot*t t^2/2-e_min*t+t^2/2-i_pivot*t = t^2-(e_min+i_pivot)*t tB^2-(e_min+i_pivot)*tB - tA^2 + (e_min+i_pivot)*tA = (tB^2 - tA^2) - (e_min+i_pivot)*(tB-tA)
# Case J_before_closeI & i_pivot before J before t-e_min t-i_pivot min(t-i_pivot,t-e_min) = t-i_pivot t^2/2-i_pivot*t t^2/2-i_pivot*t t^2/2-i_pivot*t+t^2/2-i_pivot*t = t^2-2*i_pivot*t tB^2-2*i_pivot*tB - tA^2 + 2*i_pivot*tA = (tB^2 - tA^2) - 2*i_pivot*(tB-tA)
# Case J_after_closeI & i_pivot before J after e_max-t t-i_pivot min(t-i_pivot,e_max-t) = t-i_pivot t^2/2-i_pivot*t t^2/2-i_pivot*t t^2/2-i_pivot*t+t^2/2-i_pivot*t = t^2-2*i_pivot*t tB^2-2*i_pivot*tB - tA^2 + 2*i_pivot*tA = (tB^2 - tA^2) - 2*i_pivot*(tB-tA)
# Case J_after_closeE & i_pivot before J after e_max-t t-i_pivot min(t-i_pivot,e_max-t) = e_max-t e_max*t-t^2/2 t^2/2-i_pivot*t e_max*t-t^2/2+t^2/2-i_pivot*t = (e_max-i_pivot)*t (e_max-i_pivot)*tB - (e_max-i_pivot)*tA = (e_max-i_pivot)*(tB-tA)
if i_pivot >= max(J):
part1_before_closeE = (i_pivot-e_min)*(j_before_before_max - j_before_before_min) # (i_pivot-e_min)*(tB-tA) # j_before_before_max - j_before_before_min
part2_before_closeI = 2*i_pivot*(j_before_after_max-j_before_after_min) - (j_before_after_max**2 - j_before_after_min**2) # 2*i_pivot*(tB-tA) - (tB^2 - tA^2) # j_before_after_max - j_before_after_min
part3_after_closeI = 2*i_pivot*(j_after_before_max-j_after_before_min) - (j_after_before_max**2 - j_after_before_min**2) # 2*i_pivot*(tB-tA) - (tB^2 - tA^2) # j_after_before_max - j_after_before_min
part4_after_closeE = (e_max+i_pivot)*(j_after_after_max-j_after_after_min) - (j_after_after_max**2 - j_after_after_min**2) # (e_max+i_pivot)*(tB-tA) - (tB^2 - tA^2) # j_after_after_max - j_after_after_min
out_parts = [part1_before_closeE, part2_before_closeI, part3_after_closeI, part4_after_closeE]
elif i_pivot <= min(J):
part1_before_closeE = (j_before_before_max**2 - j_before_before_min**2) - (e_min+i_pivot)*(j_before_before_max-j_before_before_min) # (tB^2 - tA^2) - (e_min+i_pivot)*(tB-tA) # j_before_before_max - j_before_before_min
part2_before_closeI = (j_before_after_max**2 - j_before_after_min**2) - 2*i_pivot*(j_before_after_max-j_before_after_min) # (tB^2 - tA^2) - 2*i_pivot*(tB-tA) # j_before_after_max - j_before_after_min
part3_after_closeI = (j_after_before_max**2 - j_after_before_min**2) - 2*i_pivot*(j_after_before_max - j_after_before_min) # (tB^2 - tA^2) - 2*i_pivot*(tB-tA) # j_after_before_max - j_after_before_min
part4_after_closeE = (e_max-i_pivot)*(j_after_after_max - j_after_after_min) # (e_max-i_pivot)*(tB-tA) # j_after_after_max - j_after_after_min
out_parts = [part1_before_closeE, part2_before_closeI, part3_after_closeI, part4_after_closeE]
else:
raise ValueError('The i_pivot should be outside J')
out_integral_min_dm_plus_d = _sum_wo_nan(out_parts) # integral on all J, i.e. sum of the disjoint parts
# We have for each point t of J:
# \bar{F}_{t, recall}(d) = 1 - (1/|E|) * (min(d,m) + d)
# Since t is a single-point here, and we are in the case where i_pivot is inside E.
# The integral is then given by:
# C = \int_{t \in J} \bar{F}_{t, recall}(D(t)) dt
# = \int_{t \in J} 1 - (1/|E|) * (min(d,m) + d) dt
# = |J| - (1/|E|) * [\int_{t \in J} (min(d,m) + d) dt]
# = |J| - (1/|E|) * out_integral_min_dm_plus_d
DeltaJ = max(J) - min(J)
DeltaE = max(E) - min(E)
C = DeltaJ - (1/DeltaE) * out_integral_min_dm_plus_d
return(C)
def integral_interval_probaCDF_recall(I, J, E):
"""
Integral of the probability of distances over the interval J.
Compute the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$.
This is the *integral* i.e. the sum (not the mean)
:param I: a single (non empty) predicted interval
:param J: ground truth (non empty) interval
:param E: the affiliation/influence zone for J
:return: the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$
"""
# I and J are single intervals (not generic sets)
# E is the outside affiliation interval of J (even for recall!)
# (in particular J \subset E)
#
# J is the portion of the ground truth affiliated to I
# I is a predicted interval (can be outside E possibly since it's recall)
def f(J_cut):
if J_cut is None:
return(0)
else:
return integral_mini_interval_Precall_CDFmethod(I, J_cut, E)
# If J_middle is fully included into I, it is
# integral of 1 on the interval J_middle, so it's |J_middle|
def f0(J_middle):
if J_middle is None:
return(0)
else:
return(max(J_middle) - min(J_middle))
cut_into_three = cut_into_three_func(J, I) # it's J that we cut into 3, depending on the position w.r.t I
# since we integrate over J this time.
#
# Distance for now, not the mean:
# Distance left: Between cut_into_three[0] and the point min(I)
d_left = f(cut_into_three[0])
# Distance middle: Between cut_into_three[1] = J inter I, and I
d_middle = f0(cut_into_three[1])
# Distance right: Between cut_into_three[2] and the point max(I)
d_right = f(cut_into_three[2])
# It's an integral so summable
return(d_left + d_middle + d_right)
|