File size: 20,845 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
from .generics import _sum_wo_nan
"""
In order to shorten the length of the variables,
the general convention in this file is to let:
    - I for a predicted event (start, stop),
    - Is for a list of predicted events,
    - J for a ground truth event,
    - Js for a list of ground truth events.
"""

def interval_length(J = (1,2)):
    """
    Length of an interval
    
    :param J: couple representating the start and stop of an interval, or None
    :return: length of the interval, and 0 for a None interval
    """
    if J is None:
        return(0)
    return(J[1] - J[0])

def sum_interval_lengths(Is = [(1,2),(3,4),(5,6)]):
    """
    Sum of length of the intervals
    
    :param Is: list of intervals represented by starts and stops
    :return: sum of the interval length
    """
    return(sum([interval_length(I) for I in Is]))

def interval_intersection(I = (1, 3), J = (2, 4)): 
    """
    Intersection between two intervals I and J
    I and J should be either empty or represent a positive interval (no point)
    
    :param I: an interval represented by start and stop
    :param J: a second interval of the same form
    :return: an interval representing the start and stop of the intersection (or None if empty)
    """
    if I is None:
        return(None)
    if J is None:
        return(None)
        
    I_inter_J = (max(I[0], J[0]), min(I[1], J[1]))
    if I_inter_J[0] >= I_inter_J[1]:
        return(None)
    else:
        return(I_inter_J)

def interval_subset(I = (1, 3), J = (0, 6)):
    """
    Checks whether I is a subset of J
    
    :param I: an non empty interval represented by start and stop
    :param J: a second non empty interval of the same form
    :return: True if I is a subset of J
    """
    if (I[0] >= J[0]) and (I[1] <= J[1]):
        return True
    else:
        return False

def cut_into_three_func(I, J):
    """
    Cut an interval I into a partition of 3 subsets:
        the elements before J,
        the elements belonging to J,
        and the elements after J
    
    :param I: an interval represented by start and stop, or None for an empty one
    :param J: a non empty interval
    :return: a triplet of three intervals, each represented by either (start, stop) or None
    """
    if I is None:
        return((None, None, None))
    
    I_inter_J = interval_intersection(I, J)
    if I == I_inter_J:
        I_before = None
        I_after = None
    elif I[1] <= J[0]:
        I_before = I
        I_after = None
    elif I[0] >= J[1]:
        I_before = None
        I_after = I
    elif (I[0] <= J[0]) and (I[1] >= J[1]):
        I_before = (I[0], I_inter_J[0])
        I_after = (I_inter_J[1], I[1])
    elif I[0] <= J[0]:
        I_before = (I[0], I_inter_J[0])
        I_after = None
    elif I[1] >= J[1]:
        I_before = None
        I_after = (I_inter_J[1], I[1])
    else:
        raise ValueError('unexpected unconsidered case')
    return(I_before, I_inter_J, I_after)
  
def get_pivot_j(I, J):
    """
    Get the single point of J that is the closest to I, called 'pivot' here,
    with the requirement that I should be outside J
    
    :param I: a non empty interval (start, stop)
    :param J: another non empty interval, with empty intersection with I
    :return: the element j of J that is the closest to I
    """
    if interval_intersection(I, J) is not None:
        raise ValueError('I and J should have a void intersection')

    j_pivot = None # j_pivot is a border of J
    if max(I) <= min(J):
        j_pivot = min(J)
    elif min(I) >= max(J):
        j_pivot = max(J)
    else:
        raise ValueError('I should be outside J')
    return(j_pivot)

def integral_mini_interval(I, J):
    """
    In the specific case where interval I is located outside J,
    integral of distance from x to J over the interval x \in I.
    This is the *integral* i.e. the sum.
    It's not the mean (not divided by the length of I yet)
    
    :param I: a interval (start, stop), or None
    :param J: a non empty interval, with empty intersection with I
    :return: the integral of distances d(x, J) over x \in I
    """
    if I is None:
        return(0)

    j_pivot = get_pivot_j(I, J)
    a = min(I)
    b = max(I)
    return((b-a)*abs((j_pivot - (a+b)/2)))

def integral_interval_distance(I, J):
    """
    For any non empty intervals I, J, compute the
    integral of distance from x to J over the interval x \in I.
    This is the *integral* i.e. the sum. 
    It's not the mean (not divided by the length of I yet)
    The interval I can intersect J or not
    
    :param I: a interval (start, stop), or None
    :param J: a non empty interval
    :return: the integral of distances d(x, J) over x \in I
    """
    # I and J are single intervals (not generic sets)
    # I is a predicted interval in the range of affiliation of J
    
    def f(I_cut):
        return(integral_mini_interval(I_cut, J))
    # If I_middle is fully included into J, it is
    # the distance to J is always 0
    def f0(I_middle):
        return(0)

    cut_into_three = cut_into_three_func(I, J)
    # Distance for now, not the mean:
    # Distance left: Between cut_into_three[0] and the point min(J)
    d_left = f(cut_into_three[0])
    # Distance middle: Between cut_into_three[1] = I inter J, and J
    d_middle = f0(cut_into_three[1])
    # Distance right: Between cut_into_three[2] and the point max(J)
    d_right = f(cut_into_three[2])
    # It's an integral so summable
    return(d_left + d_middle + d_right)

def integral_mini_interval_P_CDFmethod__min_piece(I, J, E):
    """
    Helper of `integral_mini_interval_Pprecision_CDFmethod`
    In the specific case where interval I is located outside J,
    compute the integral $\int_{d_min}^{d_max} \min(m, x) dx$, with:
    - m the smallest distance from J to E,
    - d_min the smallest distance d(x, J) from x \in I to J
    - d_max the largest distance d(x, J) from x \in I to J
    
    :param I: a single predicted interval, a non empty interval (start, stop)
    :param J: ground truth interval, a non empty interval, with empty intersection with I
    :param E: the affiliation/influence zone for J, represented as a couple (start, stop)
    :return: the integral $\int_{d_min}^{d_max} \min(m, x) dx$
    """
    if interval_intersection(I, J) is not None:
        raise ValueError('I and J should have a void intersection')
    if not interval_subset(J, E):
        raise ValueError('J should be included in E')
    if not interval_subset(I, E):
        raise ValueError('I should be included in E')

    e_min = min(E)
    j_min = min(J)
    j_max = max(J)
    e_max = max(E)
    i_min = min(I)
    i_max = max(I)
  
    d_min = max(i_min - j_max, j_min - i_max)
    d_max = max(i_max - j_max, j_min - i_min)
    m = min(j_min - e_min, e_max - j_max)
    A = min(d_max, m)**2 - min(d_min, m)**2
    B = max(d_max, m) - max(d_min, m)
    C = (1/2)*A + m*B
    return(C)

def integral_mini_interval_Pprecision_CDFmethod(I, J, E):
    """
    Integral of the probability of distances over the interval I.
    In the specific case where interval I is located outside J,
    compute the integral $\int_{x \in I} Fbar(dist(x,J)) dx$.
    This is the *integral* i.e. the sum (not the mean)
    
    :param I: a single predicted interval, a non empty interval (start, stop)
    :param J: ground truth interval, a non empty interval, with empty intersection with I
    :param E: the affiliation/influence zone for J, represented as a couple (start, stop)
    :return: the integral $\int_{x \in I} Fbar(dist(x,J)) dx$
    """
    integral_min_piece = integral_mini_interval_P_CDFmethod__min_piece(I, J, E)
  
    e_min = min(E)
    j_min = min(J)
    j_max = max(J)
    e_max = max(E)
    i_min = min(I)
    i_max = max(I)
    d_min = max(i_min - j_max, j_min - i_max)
    d_max = max(i_max - j_max, j_min - i_min)
    integral_linear_piece = (1/2)*(d_max**2 - d_min**2)
    integral_remaining_piece = (j_max - j_min)*(i_max - i_min)
    
    DeltaI = i_max - i_min
    DeltaE = e_max - e_min
    
    output = DeltaI - (1/DeltaE)*(integral_min_piece + integral_linear_piece + integral_remaining_piece)
    return(output)

def integral_interval_probaCDF_precision(I, J, E):
    """
    Integral of the probability of distances over the interval I.
    Compute the integral $\int_{x \in I} Fbar(dist(x,J)) dx$.
    This is the *integral* i.e. the sum (not the mean)
    
    :param I: a single (non empty) predicted interval in the zone of affiliation of J
    :param J: ground truth interval
    :param E: affiliation/influence zone for J
    :return: the integral $\int_{x \in I} Fbar(dist(x,J)) dx$
    """
    # I and J are single intervals (not generic sets)
    def f(I_cut):
        if I_cut is None:
            return(0)
        else:
            return(integral_mini_interval_Pprecision_CDFmethod(I_cut, J, E))
            
    # If I_middle is fully included into J, it is
    # integral of 1 on the interval I_middle, so it's |I_middle|
    def f0(I_middle):
        if I_middle is None:
            return(0)
        else:
            return(max(I_middle) - min(I_middle))
    
    cut_into_three = cut_into_three_func(I, J)
    # Distance for now, not the mean:
    # Distance left: Between cut_into_three[0] and the point min(J)
    d_left = f(cut_into_three[0])
    # Distance middle: Between cut_into_three[1] = I inter J, and J
    d_middle = f0(cut_into_three[1])
    # Distance right: Between cut_into_three[2] and the point max(J)
    d_right = f(cut_into_three[2])
    # It's an integral so summable
    return(d_left + d_middle + d_right)

def cut_J_based_on_mean_func(J, e_mean):
    """
    Helper function for the recall.
    Partition J into two intervals: before and after e_mean
    (e_mean represents the center element of E the zone of affiliation)
    
    :param J: ground truth interval
    :param e_mean: a float number (center value of E)
    :return: a couple partitionning J into (J_before, J_after)
    """
    if J is None:
        J_before = None
        J_after = None
    elif e_mean >= max(J):
        J_before = J
        J_after = None
    elif e_mean <= min(J):
        J_before = None
        J_after = J
    else: # e_mean is across J
        J_before = (min(J), e_mean)
        J_after = (e_mean, max(J))
        
    return((J_before, J_after))

def integral_mini_interval_Precall_CDFmethod(I, J, E):
    """
    Integral of the probability of distances over the interval J.
    In the specific case where interval J is located outside I,
    compute the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$.
    This is the *integral* i.e. the sum (not the mean)
    
    :param I: a single (non empty) predicted interval
    :param J: ground truth (non empty) interval, with empty intersection with I
    :param E: the affiliation/influence zone for J, represented as a couple (start, stop)
    :return: the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$
    """
    # The interval J should be located outside I 
    # (so it's either the left piece or the right piece w.r.t I)
    i_pivot = get_pivot_j(J, I)
    e_min = min(E)
    e_max = max(E)
    e_mean = (e_min + e_max) / 2
    
    # If i_pivot is outside E (it's possible), then
    # the distance is worst that any random element within E,
    # so we set the recall to 0
    if i_pivot <= min(E):
        return(0)
    elif i_pivot >= max(E):
        return(0)
    # Otherwise, we have at least i_pivot in E and so d < M so min(d,M)=d
    
    cut_J_based_on_e_mean = cut_J_based_on_mean_func(J, e_mean)
    J_before = cut_J_based_on_e_mean[0]
    J_after = cut_J_based_on_e_mean[1]
  
    iemin_mean = (e_min + i_pivot)/2
    cut_Jbefore_based_on_iemin_mean = cut_J_based_on_mean_func(J_before, iemin_mean)
    J_before_closeE = cut_Jbefore_based_on_iemin_mean[0] # before e_mean and closer to e_min than i_pivot ~ J_before_before
    J_before_closeI = cut_Jbefore_based_on_iemin_mean[1] # before e_mean and closer to i_pivot than e_min ~ J_before_after
    
    iemax_mean = (e_max + i_pivot)/2
    cut_Jafter_based_on_iemax_mean = cut_J_based_on_mean_func(J_after, iemax_mean)
    J_after_closeI = cut_Jafter_based_on_iemax_mean[0] # after e_mean and closer to i_pivot than e_max ~ J_after_before
    J_after_closeE = cut_Jafter_based_on_iemax_mean[1] # after e_mean and closer to e_max than i_pivot ~ J_after_after
    
    if J_before_closeE is not None:
        j_before_before_min = min(J_before_closeE) # == min(J)
        j_before_before_max = max(J_before_closeE)
    else:
        j_before_before_min = math.nan
        j_before_before_max = math.nan
  
    if J_before_closeI is not None:
        j_before_after_min = min(J_before_closeI) # == j_before_before_max if existing
        j_before_after_max = max(J_before_closeI) # == max(J_before)
    else:
        j_before_after_min = math.nan
        j_before_after_max = math.nan
   
    if J_after_closeI is not None:
        j_after_before_min = min(J_after_closeI) # == min(J_after)
        j_after_before_max = max(J_after_closeI) 
    else:
        j_after_before_min = math.nan
        j_after_before_max = math.nan
    
    if J_after_closeE is not None:
        j_after_after_min = min(J_after_closeE) # == j_after_before_max if existing
        j_after_after_max = max(J_after_closeE) # == max(J)
    else:
        j_after_after_min = math.nan
        j_after_after_max = math.nan
  
    # <-- J_before_closeE --> <-- J_before_closeI --> <-- J_after_closeI --> <-- J_after_closeE -->
    # j_bb_min       j_bb_max j_ba_min       j_ba_max j_ab_min      j_ab_max j_aa_min      j_aa_max
    # (with `b` for before and `a` for after in the previous variable names)
    
    #                                          vs e_mean  m = min(t-e_min, e_max-t)  d=|i_pivot-t|   min(d,m)                            \int min(d,m)dt   \int d dt        \int_(min(d,m)+d)dt                                    \int_{t \in J}(min(d,m)+d)dt
    # Case J_before_closeE & i_pivot after J   before     t-e_min                    i_pivot-t       min(i_pivot-t,t-e_min) = t-e_min    t^2/2-e_min*t     i_pivot*t-t^2/2  t^2/2-e_min*t+i_pivot*t-t^2/2 = (i_pivot-e_min)*t      (i_pivot-e_min)*tB - (i_pivot-e_min)*tA = (i_pivot-e_min)*(tB-tA)
    # Case J_before_closeI & i_pivot after J   before     t-e_min                    i_pivot-t       min(i_pivot-t,t-e_min) = i_pivot-t  i_pivot*t-t^2/2   i_pivot*t-t^2/2  i_pivot*t-t^2/2+i_pivot*t-t^2/2 = 2*i_pivot*t-t^2      2*i_pivot*tB-tB^2 - 2*i_pivot*tA + tA^2 = 2*i_pivot*(tB-tA) - (tB^2 - tA^2)
    # Case J_after_closeI & i_pivot after J    after      e_max-t                    i_pivot-t       min(i_pivot-t,e_max-t) = i_pivot-t  i_pivot*t-t^2/2   i_pivot*t-t^2/2  i_pivot*t-t^2/2+i_pivot*t-t^2/2 = 2*i_pivot*t-t^2      2*i_pivot*tB-tB^2 - 2*i_pivot*tA + tA^2 = 2*i_pivot*(tB-tA) - (tB^2 - tA^2)
    # Case J_after_closeE & i_pivot after J    after      e_max-t                    i_pivot-t       min(i_pivot-t,e_max-t) = e_max-t    e_max*t-t^2/2     i_pivot*t-t^2/2  e_max*t-t^2/2+i_pivot*t-t^2/2 = (e_max+i_pivot)*t-t^2  (e_max+i_pivot)*tB-tB^2 - (e_max+i_pivot)*tA + tA^2 = (e_max+i_pivot)*(tB-tA) - (tB^2 - tA^2)
    #
    # Case J_before_closeE & i_pivot before J  before     t-e_min                    t-i_pivot       min(t-i_pivot,t-e_min) = t-e_min    t^2/2-e_min*t     t^2/2-i_pivot*t  t^2/2-e_min*t+t^2/2-i_pivot*t = t^2-(e_min+i_pivot)*t  tB^2-(e_min+i_pivot)*tB - tA^2 + (e_min+i_pivot)*tA = (tB^2 - tA^2) - (e_min+i_pivot)*(tB-tA)
    # Case J_before_closeI & i_pivot before J  before     t-e_min                    t-i_pivot       min(t-i_pivot,t-e_min) = t-i_pivot  t^2/2-i_pivot*t   t^2/2-i_pivot*t  t^2/2-i_pivot*t+t^2/2-i_pivot*t = t^2-2*i_pivot*t      tB^2-2*i_pivot*tB - tA^2 + 2*i_pivot*tA = (tB^2 - tA^2) - 2*i_pivot*(tB-tA)
    # Case J_after_closeI & i_pivot before J   after      e_max-t                    t-i_pivot       min(t-i_pivot,e_max-t) = t-i_pivot  t^2/2-i_pivot*t   t^2/2-i_pivot*t  t^2/2-i_pivot*t+t^2/2-i_pivot*t = t^2-2*i_pivot*t      tB^2-2*i_pivot*tB - tA^2 + 2*i_pivot*tA = (tB^2 - tA^2) - 2*i_pivot*(tB-tA)
    # Case J_after_closeE & i_pivot before J   after      e_max-t                    t-i_pivot       min(t-i_pivot,e_max-t) = e_max-t    e_max*t-t^2/2     t^2/2-i_pivot*t  e_max*t-t^2/2+t^2/2-i_pivot*t = (e_max-i_pivot)*t      (e_max-i_pivot)*tB - (e_max-i_pivot)*tA = (e_max-i_pivot)*(tB-tA)
    
    if i_pivot >= max(J):
        part1_before_closeE = (i_pivot-e_min)*(j_before_before_max - j_before_before_min) # (i_pivot-e_min)*(tB-tA) # j_before_before_max - j_before_before_min
        part2_before_closeI = 2*i_pivot*(j_before_after_max-j_before_after_min) - (j_before_after_max**2 - j_before_after_min**2) # 2*i_pivot*(tB-tA) - (tB^2 - tA^2) # j_before_after_max - j_before_after_min
        part3_after_closeI = 2*i_pivot*(j_after_before_max-j_after_before_min) - (j_after_before_max**2 - j_after_before_min**2) # 2*i_pivot*(tB-tA) - (tB^2 - tA^2) # j_after_before_max - j_after_before_min  
        part4_after_closeE = (e_max+i_pivot)*(j_after_after_max-j_after_after_min) - (j_after_after_max**2 - j_after_after_min**2) # (e_max+i_pivot)*(tB-tA) - (tB^2 - tA^2) # j_after_after_max - j_after_after_min
        out_parts = [part1_before_closeE, part2_before_closeI, part3_after_closeI, part4_after_closeE]
    elif i_pivot <= min(J):
        part1_before_closeE = (j_before_before_max**2 - j_before_before_min**2) - (e_min+i_pivot)*(j_before_before_max-j_before_before_min) # (tB^2 - tA^2) - (e_min+i_pivot)*(tB-tA) # j_before_before_max - j_before_before_min
        part2_before_closeI = (j_before_after_max**2 - j_before_after_min**2) - 2*i_pivot*(j_before_after_max-j_before_after_min) # (tB^2 - tA^2) - 2*i_pivot*(tB-tA) # j_before_after_max - j_before_after_min
        part3_after_closeI = (j_after_before_max**2 - j_after_before_min**2) - 2*i_pivot*(j_after_before_max - j_after_before_min) # (tB^2 - tA^2) - 2*i_pivot*(tB-tA) # j_after_before_max - j_after_before_min
        part4_after_closeE = (e_max-i_pivot)*(j_after_after_max - j_after_after_min) # (e_max-i_pivot)*(tB-tA) # j_after_after_max - j_after_after_min
        out_parts = [part1_before_closeE, part2_before_closeI, part3_after_closeI, part4_after_closeE]
    else:
        raise ValueError('The i_pivot should be outside J')
    
    out_integral_min_dm_plus_d = _sum_wo_nan(out_parts) # integral on all J, i.e. sum of the disjoint parts

    # We have for each point t of J:
    # \bar{F}_{t, recall}(d) = 1 - (1/|E|) * (min(d,m) + d)
    # Since t is a single-point here, and we are in the case where i_pivot is inside E.
    # The integral is then given by:
    # C = \int_{t \in J} \bar{F}_{t, recall}(D(t)) dt
    #   = \int_{t \in J} 1 - (1/|E|) * (min(d,m) + d) dt
    #   = |J| - (1/|E|) * [\int_{t \in J} (min(d,m) + d) dt]
    #   = |J| - (1/|E|) * out_integral_min_dm_plus_d    
    DeltaJ = max(J) - min(J)
    DeltaE = max(E) - min(E)
    C = DeltaJ - (1/DeltaE) * out_integral_min_dm_plus_d
    
    return(C)

def integral_interval_probaCDF_recall(I, J, E):
    """
    Integral of the probability of distances over the interval J.
    Compute the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$.
    This is the *integral* i.e. the sum (not the mean)

    :param I: a single (non empty) predicted interval
    :param J: ground truth (non empty) interval
    :param E: the affiliation/influence zone for J
    :return: the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$
    """
    # I and J are single intervals (not generic sets)
    # E is the outside affiliation interval of J (even for recall!)
    # (in particular J \subset E)
    #
    # J is the portion of the ground truth affiliated to I
    # I is a predicted interval (can be outside E possibly since it's recall)
    def f(J_cut):
        if J_cut is None:
            return(0)
        else:
            return integral_mini_interval_Precall_CDFmethod(I, J_cut, E)

    # If J_middle is fully included into I, it is
    # integral of 1 on the interval J_middle, so it's |J_middle|
    def f0(J_middle):
        if J_middle is None:
            return(0)
        else:
            return(max(J_middle) - min(J_middle))
    
    cut_into_three = cut_into_three_func(J, I) # it's J that we cut into 3, depending on the position w.r.t I
    # since we integrate over J this time.
    #
    # Distance for now, not the mean:
    # Distance left: Between cut_into_three[0] and the point min(I)
    d_left = f(cut_into_three[0])
    # Distance middle: Between cut_into_three[1] = J inter I, and I
    d_middle = f0(cut_into_three[1])
    # Distance right: Between cut_into_three[2] and the point max(I)
    d_right = f(cut_into_three[2])
    # It's an integral so summable
    return(d_left + d_middle + d_right)