Spaces:
Running
Running
File size: 13,818 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import sys
import time
from .basic_metrics import basic_metricor, generate_curve
from statsmodels.tsa.stattools import acf
from scipy.signal import argrelextrema
import numpy as np
import multiprocessing
import multiprocessing
import numpy as np
import torch
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
from functools import partial
from tqdm import tqdm
import time
# ============== Parallelized Affiliation ==============
def _compute_auc_roc(labels, score):
grader = basic_metricor()
try:
return grader.metric_ROC(labels, score)
except Exception:
return 0.0
def _compute_auc_pr(labels, score):
grader = basic_metricor()
try:
return grader.metric_PR(labels, score)
except Exception:
return 0.0
def _compute_vus(labels, score, slidingWindow, version):
try:
_, _, _, _, _, _, VUS_ROC, VUS_PR = generate_curve(labels.astype(int), score, slidingWindow, version)
return VUS_ROC, VUS_PR
except Exception:
return 0.0, 0.0
def _compute_pointf1(labels, score):
# print("Evaluating F1 standard...")
grader = basic_metricor()
try:
# print("Using chunked parallel F1 computation...")
return grader.metric_standard_F1_chunked(
true_labels=labels,
anomaly_scores=score,
chunk_size=25, # Process 25 thresholds per chunk
num_workers=4 # Use 4 parallel workers
)
except Exception:
# print("F1 standard computation failed, returning zeros.")
return {'F1': 0.0, 'Precision': 0.0, 'Recall': 0.0}
def _compute_pointf1pa(labels, score):
grader = basic_metricor()
try:
return grader.metric_PointF1PA_chunked(
label=labels,
score=score,
chunk_size=30, # Process 30 quantiles per chunk
num_workers=6 # Use 6 parallel workers
)
except Exception:
return {'F1_PA': 0.0, 'P_PA': 0.0, 'R_PA': 0.0}
def _compute_affiliation(labels, score):
grader = basic_metricor()
try:
return grader.metric_Affiliation(labels, score)
except Exception:
return 0.0, 0.0, 0.0
def _compute_t_score(labels, score):
grader = basic_metricor()
try:
return grader.metric_F1_T(labels, score)
except Exception:
return {'F1_T': 0.0, 'P_T': 0.0, 'R_T': 0.0}
def _compute_f1_t(labels, score):
grader = basic_metricor()
try:
# Use non-parallel path here to avoid pickling issues inside thread workers
# metric_F1_T(use_parallel=False) runs in-process and returns a dict
return grader.metric_F1_T(labels, score, use_parallel=True)
except Exception:
# Always return a dict to keep downstream code consistent
return {'F1_T': 0.0, 'P_T': 0.0, 'R_T': 0.0}
def _run_task(func, args):
return func(*args)
def get_metrics_optimized(score, labels, slidingWindow=100, pred=None, version='opt', thre=250):
"""
Fully optimized metrics computation with proper parallelization
"""
metrics = {}
start_total = time.time()
# Ensure proper data types to avoid float/integer issues
labels = np.asarray(labels, dtype=int)
score = np.asarray(score, dtype=float)
# Determine optimal number of workers based on CPU count and workload
n_cores = multiprocessing.cpu_count()
# For threshold-iterating functions (affiliation and F1_T)
# Use more workers since they have heavy loops
heavy_workers = min(n_cores - 2, 8) # Leave some cores for system
# For simple metrics
light_workers = min(n_cores // 2, 8)
print(f"Using {heavy_workers} workers for heavy metrics, {light_workers} for light metrics")
# Start the heavy computations first (they take longest)
print("Starting heavy computations (Affiliation and F1_T)...")
heavy_start = time.time()
grader = basic_metricor()
with ProcessPoolExecutor(max_workers=2) as main_executor:
# Launch the two heaviest computations with their own internal parallelization
affiliation_future = main_executor.submit(
grader._compute_affiliation_parallel,
labels,
score,
num_workers=heavy_workers
)
# t_score_future = main_executor.submit(
# grader.metric_F1_T_fast,
# labels,
# score,
# num_workers=heavy_workers*2
# )
#
# While heavy computations are running, compute light metrics
print("Computing light metrics in parallel...")
light_start = time.time()
with ThreadPoolExecutor(max_workers=light_workers) as light_executor:
light_futures = {
'auc_roc': light_executor.submit(_compute_auc_roc, labels, score),
'auc_pr': light_executor.submit(_compute_auc_pr, labels, score),
'vus': light_executor.submit(_compute_vus, labels, score, slidingWindow, version),
'pointf1': light_executor.submit(_compute_pointf1, labels, score),
'pointf1pa': light_executor.submit(_compute_pointf1pa, labels, score),
'f1_t': light_executor.submit(_compute_f1_t, labels, score)
}
# Collect light metric results as they complete
light_results = {}
for name, future in light_futures.items():
try:
light_results[name] = future.result()
print(f" β {name} completed")
except Exception as e:
print(f" β {name} failed: {e}")
light_results[name] = None
print(f"Light metrics completed in {time.time() - light_start:.2f}s")
# Wait for heavy computations to complete
print("Waiting for heavy computations...")
try:
Affiliation_F, Affiliation_P, Affiliation_R = affiliation_future.result()
print(f" β Affiliation completed")
except Exception as e:
print(f" β Affiliation failed: {e}")
Affiliation_F, Affiliation_P, Affiliation_R = 0.0, 0.0, 0.0
# try:
# T_score = t_score_future.result()
# print(f" β F1_T completed")
# except Exception as e:
# print(f" β F1_T failed: {e}")
# T_score = {'F1_T': 0.0, 'P_T': 0.0, 'R_T': 0.0}
print(f"Heavy metrics completed in {time.time() - heavy_start:.2f}s")
# Unpack light results
AUC_ROC = light_results.get('auc_roc', 0.0)
AUC_PR = light_results.get('auc_pr', 0.0)
VUS_result = light_results.get('vus', (0.0, 0.0))
if isinstance(VUS_result, tuple):
VUS_ROC, VUS_PR = VUS_result
else:
VUS_ROC, VUS_PR = 0.0, 0.0
# print("HERE IS POINTF1: ")
# print(light_results.get('pointf1',))
# sys.exit()
PointF1 = light_results.get('pointf1', {'F1': 0.0, 'Precision': 0.0, 'Recall': 0.0})
PointF1PA = light_results.get('pointf1pa', {'F1_PA': 0.0, 'P_PA': 0.0, 'R_PA': 0.0})
T_score = light_results.get('f1_t', {'F1_T': 0.0, 'P_T': 0.0, 'R_T': 0.0})
# Safeguard: if upstream returned a tuple (e.g., from an older fallback), coerce to dict
if isinstance(T_score, tuple):
try:
T_score = {'F1_T': T_score[0], 'P_T': T_score[1], 'R_T': T_score[2]}
except Exception:
T_score = {'F1_T': 0.0, 'P_T': 0.0, 'R_T': 0.0}
# Build final metrics dictionary
metrics['AUC-PR'] = AUC_PR
metrics['AUC-ROC'] = AUC_ROC
metrics['VUS-PR'] = VUS_PR
metrics['VUS-ROC'] = VUS_ROC
metrics['Standard-F1'] = PointF1.get('F1', 0.0)
metrics['Standard-Precision'] = PointF1.get('Precision', 0.0)
metrics['Standard-Recall'] = PointF1.get('Recall', 0.0)
metrics['PA-F1'] = PointF1PA.get('F1_PA', 0.0)
metrics['PA-Precision'] = PointF1PA.get('P_PA', 0.0)
metrics['PA-Recall'] = PointF1PA.get('R_PA', 0.0)
metrics['Affiliation-F'] = Affiliation_F
metrics['Affiliation-P'] = Affiliation_P
metrics['Affiliation-R'] = Affiliation_R
metrics['F1_T'] = T_score.get('F1_T', 0.0)
metrics['Precision_T'] = T_score.get('P_T', 0.0)
metrics['Recall_T'] = T_score.get('R_T', 0.0)
print(f"\nTotal computation time: {time.time() - start_total:.2f}s")
return metrics
def get_metrics(score, labels, slidingWindow=100, pred=None, version='opt', thre=250):
metrics = {}
# Ensure proper data types to avoid float/integer issues
labels = np.asarray(labels, dtype=int)
score = np.asarray(score, dtype=float)
'''
Threshold Independent
'''
grader = basic_metricor()
# AUC_ROC, Precision, Recall, PointF1, PointF1PA, Rrecall, ExistenceReward, OverlapReward, Rprecision, RF, Precision_at_k = grader.metric_new(labels, score, pred, plot_ROC=False)
try:
AUC_ROC = grader.metric_ROC(labels, score)
except Exception:
AUC_ROC = 0.0
try:
AUC_PR = grader.metric_PR(labels, score)
except Exception:
AUC_PR = 0.0
# R_AUC_ROC, R_AUC_PR, _, _, _ = grader.RangeAUC(labels=labels, score=score, window=slidingWindow, plot_ROC=True)
try:
_, _, _, _, _, _,VUS_ROC, VUS_PR = generate_curve(labels.astype(int), score, slidingWindow, version, )
except Exception:
VUS_ROC, VUS_PR = 0.0, 0.0
'''
Threshold Dependent
if pred is None --> use the oracle threshold
'''
PointF1 = grader.metric_standard_F1(labels, score,)
PointF1PA = grader.metric_PointF1PA(labels, score,)
# EventF1PA = grader.metric_EventF1PA(labels, score,)
# RF1 = grader.metric_RF1(labels, score,)
try:
Affiliation_F, Affiliation_P, Affiliation_R = grader.metric_Affiliation(labels, score)
except Exception:
Affiliation_F, Affiliation_P, Affiliation_R = 0.0, 0.0, 0.0
T_score = grader.metric_F1_T(labels, score)
metrics['AUC-PR'] = AUC_PR
metrics['AUC-ROC'] = AUC_ROC
metrics['VUS-PR'] = VUS_PR
metrics['VUS-ROC'] = VUS_ROC
metrics['Standard-F1'] = PointF1['F1']
metrics['Standard-Precision'] = PointF1['Precision']
metrics['Standard-Recall'] = PointF1['Recall']
metrics['PA-F1'] = PointF1PA['F1_PA']
metrics['PA-Precision'] = PointF1PA['P_PA']
metrics['PA-Recall'] = PointF1PA['R_PA']
# metrics['Event-based-F1'] = EventF1PA
# metrics['R-based-F1'] = RF1
metrics['Affiliation-F'] = Affiliation_F
metrics['Affiliation-P'] = Affiliation_P
metrics['Affiliation-R'] = Affiliation_R
metrics['F1_T'] = T_score['F1_T']
metrics['Precision_T'] = T_score['P_T']
metrics['Recall_T'] = T_score['R_T']
return metrics
def get_metrics_pred(score, labels, pred, slidingWindow=100):
metrics = {}
# Ensure proper data types to avoid float/integer issues
labels = np.asarray(labels, dtype=int)
score = np.asarray(score, dtype=float)
pred = np.asarray(pred, dtype=int)
grader = basic_metricor()
PointF1 = grader.standard_F1(labels, score, preds=pred)
PointF1PA = grader.metric_PointF1PA(labels, score, preds=pred)
EventF1PA = grader.metric_EventF1PA(labels, score, preds=pred)
RF1 = grader.metric_RF1(labels, score, preds=pred)
Affiliation_F, Affiliation_P, Affiliation_R = grader.metric_Affiliation(labels, score, preds=pred)
VUS_R, VUS_P, VUS_F = grader.metric_VUS_pred(labels, preds=pred, windowSize=slidingWindow)
metrics['Standard-F1'] = PointF1['F1']
metrics['Standard-Precision'] = PointF1['Precision']
metrics['Standard-Recall'] = PointF1['Recall']
metrics['PA-F1'] = PointF1PA
metrics['Event-based-F1'] = EventF1PA
metrics['R-based-F1'] = RF1
metrics['Affiliation-F'] = Affiliation_F
metrics['Affiliation-P'] = Affiliation_P
metrics['Affiliation-R'] = Affiliation_R
metrics['VUS-Recall'] = VUS_R
metrics['VUS-Precision'] = VUS_P
metrics['VUS-F'] = VUS_F
return metrics
def find_length_rank(data, rank=1):
data = data.squeeze()
if len(data.shape) > 1:
return 0
if rank == 0:
return 1
data = data[: min(20000, len(data))]
base = 3
auto_corr = acf(data, nlags=400, fft=True)[base:]
# plot_acf(data, lags=400, fft=True)
# plt.xlabel('Lags')
# plt.ylabel('Autocorrelation')
# plt.title('Autocorrelation Function (ACF)')
# plt.savefig('/data/liuqinghua/code/ts/TSAD-AutoML/AutoAD_Solution/candidate_pool/cd_diagram/ts_acf.png')
local_max = argrelextrema(auto_corr, np.greater)[0]
# print('auto_corr: ', auto_corr)
# print('local_max: ', local_max)
try:
# max_local_max = np.argmax([auto_corr[lcm] for lcm in local_max])
sorted_local_max = np.argsort([auto_corr[lcm] for lcm in local_max])[::-1] # Ascending order
max_local_max = sorted_local_max[0] # Default
if rank == 1:
max_local_max = sorted_local_max[0]
if rank == 2:
for i in sorted_local_max[1:]:
if i > sorted_local_max[0]:
max_local_max = i
break
if rank == 3:
id_tmp = 1
for i in sorted_local_max[1:]:
if i > sorted_local_max[0]:
id_tmp = i
break
for i in sorted_local_max[id_tmp:]:
if i > sorted_local_max[id_tmp]:
max_local_max = i
break
# print('sorted_local_max: ', sorted_local_max)
# print('max_local_max: ', max_local_max)
if local_max[max_local_max] < 3 or local_max[max_local_max] > 300:
return 125
return local_max[max_local_max] + base
except Exception:
return 125 |