Spaces:
Sleeping
Sleeping
File size: 8,539 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# -*- coding: utf-8 -*-
"""
This function is adapted from [pyod] by [yzhao062]
Original source: [https://github.com/yzhao062/pyod]
"""
from __future__ import division
from __future__ import print_function
import warnings
from operator import itemgetter
import numpy as np
from scipy.spatial import distance_matrix
from scipy.spatial import minkowski_distance
from sklearn.utils import check_array
from .base import BaseDetector
from ..utils.utility import check_parameter
class COF(BaseDetector):
"""Connectivity-Based Outlier Factor (COF) COF uses the ratio of average
chaining distance of data point and the average of average chaining
distance of k nearest neighbor of the data point, as the outlier score
for observations.
See :cite:`tang2002enhancing` for details.
Two version of COF are supported:
- Fast COF: computes the entire pairwise distance matrix at the cost of a
O(n^2) memory requirement.
- Memory efficient COF: calculates pairwise distances incrementally.
Use this implementation when it is not feasible to fit the n-by-n
distance in memory. This leads to a linear overhead because many
distances will have to be recalculated.
Parameters
----------
contamination : float in (0., 0.5), optional (default=0.1)
The amount of contamination of the data set, i.e.
the proportion of outliers in the data set. Used when fitting to
define the threshold on the decision function.
n_neighbors : int, optional (default=20)
Number of neighbors to use by default for k neighbors queries.
Note that n_neighbors should be less than the number of samples.
If n_neighbors is larger than the number of samples provided,
all samples will be used.
method : string, optional (default='fast')
Valid values for method are:
- 'fast' Fast COF, computes the full pairwise distance matrix up front.
- 'memory' Memory-efficient COF, computes pairwise distances only when
needed at the cost of computational speed.
Attributes
----------
decision_scores_ : numpy array of shape (n_samples,)
The outlier scores of the training data.
The higher, the more abnormal. Outliers tend to have higher
scores. This value is available once the detector is
fitted.
threshold_ : float
The threshold is based on ``contamination``. It is the
``n_samples * contamination`` most abnormal samples in
``decision_scores_``. The threshold is calculated for generating
binary outlier labels.
labels_ : int, either 0 or 1
The binary labels of the training data. 0 stands for inliers
and 1 for outliers/anomalies. It is generated by applying
``threshold_`` on ``decision_scores_``.
n_neighbors_: int
Number of neighbors to use by default for k neighbors queries.
"""
def __init__(self, contamination=0.1, n_neighbors=20, method="fast"):
super(COF, self).__init__(contamination=contamination)
if isinstance(n_neighbors, int):
check_parameter(n_neighbors, low=1, param_name='n_neighbors')
else:
raise TypeError(
"n_neighbors should be int. Got %s" % type(n_neighbors))
self.n_neighbors = n_neighbors
self.method = method
def fit(self, X, y=None):
"""Fit detector. y is ignored in unsupervised methods.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Fitted estimator.
"""
X = check_array(X)
self.n_train_ = X.shape[0]
self.n_neighbors_ = self.n_neighbors
if self.n_neighbors_ >= self.n_train_:
self.n_neighbors_ = self.n_train_ - 1
warnings.warn(
"n_neighbors is set to the number of training points "
"minus 1: {0}".format(self.n_neighbors_))
check_parameter(self.n_neighbors_, 1, self.n_train_,
include_left=True, include_right=True)
self._set_n_classes(y)
self.decision_scores_ = self.decision_function(X)
self._process_decision_scores()
return self
def decision_function(self, X):
"""Predict raw anomaly score of X using the fitted detector.
The anomaly score of an input sample is computed based on different
detector algorithms. For consistency, outliers are assigned with
larger anomaly scores.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only
if they are supported by the base estimator.
Returns
-------
anomaly_scores : numpy array of shape (n_samples,)
The anomaly score of the input samples.
"""
if self.method.lower() == "fast":
return self._cof_fast(X)
elif self.method.lower() == "memory":
return self._cof_memory(X)
else:
raise ValueError("method should be set to either \'fast\' or \'memory\'. Got %s" % self.method)
def _cof_memory(self, X):
"""
Connectivity-Based Outlier Factor (COF) Algorithm
This function is called internally to calculate the
Connectivity-Based Outlier Factor (COF) as an outlier
score for observations.
This function uses a memory efficient implementation at the cost of
speed.
:return: numpy array containing COF scores for observations.
The greater the COF, the greater the outlierness.
"""
#dist_matrix = np.array(distance_matrix(X, X))
sbn_path_index = np.zeros((X.shape[0],self.n_neighbors_), dtype=np.int64)
ac_dist, cof_ = np.zeros((X.shape[0])), np.zeros((X.shape[0]))
for i in range(X.shape[0]):
#sbn_path = np.argsort(dist_matrix[i])
sbn_path = np.argsort(minkowski_distance(X[i,:],X,p=2))
sbn_path_index[i,:] = sbn_path[1: self.n_neighbors_ + 1]
cost_desc = np.zeros((self.n_neighbors_))
for j in range(self.n_neighbors_):
#cost_desc.append(
# np.min(dist_matrix[sbn_path[j + 1]][sbn_path][:j + 1]))
cost_desc[j] = np.min(minkowski_distance(X[sbn_path[j + 1]],X,p=2)[sbn_path][:j + 1])
acd = np.zeros((self.n_neighbors_))
for _h, cost_ in enumerate(cost_desc):
neighbor_add1 = self.n_neighbors_ + 1
acd[_h] = ((2. * (neighbor_add1 - (_h + 1))) / (neighbor_add1 * self.n_neighbors_)) * cost_
ac_dist[i] = np.sum(acd)
for _g in range(X.shape[0]):
cof_[_g] = (ac_dist[_g] * self.n_neighbors_) / np.sum(ac_dist[sbn_path_index[_g]])
return np.nan_to_num(cof_)
def _cof_fast(self, X):
"""
Connectivity-Based Outlier Factor (COF) Algorithm
This function is called internally to calculate the
Connectivity-Based Outlier Factor (COF) as an outlier
score for observations.
This function uses a fast implementation at the cost of memory.
:return: numpy array containing COF scores for observations.
The greater the COF, the greater the outlierness.
"""
dist_matrix = np.array(distance_matrix(X, X))
sbn_path_index, ac_dist, cof_ = [], [], []
for i in range(X.shape[0]):
sbn_path = np.argsort(dist_matrix[i])
sbn_path_index.append(sbn_path[1: self.n_neighbors_ + 1])
cost_desc = []
for j in range(self.n_neighbors_):
cost_desc.append(
np.min(dist_matrix[sbn_path[j + 1]][sbn_path][:j + 1]))
acd = []
for _h, cost_ in enumerate(cost_desc):
neighbor_add1 = self.n_neighbors_ + 1
acd.append(((2. * (neighbor_add1 - (_h + 1))) / (
neighbor_add1 * self.n_neighbors_)) * cost_)
ac_dist.append(np.sum(acd))
for _g in range(X.shape[0]):
cof_.append((ac_dist[_g] * self.n_neighbors_) /
np.sum(itemgetter(*sbn_path_index[_g])(ac_dist)))
return np.nan_to_num(cof_) |