File size: 8,539 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""
This function is adapted from [pyod] by [yzhao062]
Original source: [https://github.com/yzhao062/pyod]
"""

from __future__ import division
from __future__ import print_function

import warnings
from operator import itemgetter

import numpy as np
from scipy.spatial import distance_matrix
from scipy.spatial import minkowski_distance
from sklearn.utils import check_array

from .base import BaseDetector
from ..utils.utility import check_parameter


class COF(BaseDetector):
    """Connectivity-Based Outlier Factor (COF) COF uses the ratio of average
    chaining distance of data point and the average of average chaining
    distance of k nearest neighbor of the data point, as the outlier score
    for observations.

    See :cite:`tang2002enhancing` for details.
    
    Two version of COF are supported:

    - Fast COF: computes the entire pairwise distance matrix at the cost of a
      O(n^2) memory requirement.
    - Memory efficient COF: calculates pairwise distances incrementally.
      Use this implementation when it is not feasible to fit the n-by-n 
      distance in memory. This leads to a linear overhead because many 
      distances will have to be recalculated.

    Parameters
    ----------
    contamination : float in (0., 0.5), optional (default=0.1)
        The amount of contamination of the data set, i.e.
        the proportion of outliers in the data set. Used when fitting to
        define the threshold on the decision function.

    n_neighbors : int, optional (default=20)
        Number of neighbors to use by default for k neighbors queries.
        Note that n_neighbors should be less than the number of samples.
        If n_neighbors is larger than the number of samples provided,
        all samples will be used.
        
    method : string, optional (default='fast')
        Valid values for method are:
            
        - 'fast' Fast COF, computes the full pairwise distance matrix up front.
        - 'memory' Memory-efficient COF, computes pairwise distances only when
          needed at the cost of computational speed.

    Attributes
    ----------
    decision_scores_ : numpy array of shape (n_samples,)
        The outlier scores of the training data.
        The higher, the more abnormal. Outliers tend to have higher
        scores. This value is available once the detector is
        fitted.

    threshold_ : float
        The threshold is based on ``contamination``. It is the
        ``n_samples * contamination`` most abnormal samples in
        ``decision_scores_``. The threshold is calculated for generating
        binary outlier labels.

    labels_ : int, either 0 or 1
        The binary labels of the training data. 0 stands for inliers
        and 1 for outliers/anomalies. It is generated by applying
        ``threshold_`` on ``decision_scores_``.

    n_neighbors_: int
        Number of neighbors to use by default for k neighbors queries.
    """

    def __init__(self, contamination=0.1, n_neighbors=20, method="fast"):
        super(COF, self).__init__(contamination=contamination)
        if isinstance(n_neighbors, int):
            check_parameter(n_neighbors, low=1, param_name='n_neighbors')
        else:
            raise TypeError(
                "n_neighbors should be int. Got %s" % type(n_neighbors))
        self.n_neighbors = n_neighbors
        self.method = method

    def fit(self, X, y=None):
        """Fit detector. y is ignored in unsupervised methods.

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The input samples.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        X = check_array(X)
        self.n_train_ = X.shape[0]
        self.n_neighbors_ = self.n_neighbors

        if self.n_neighbors_ >= self.n_train_:
            self.n_neighbors_ = self.n_train_ - 1
            warnings.warn(
                "n_neighbors is set to the number of training points "
                "minus 1: {0}".format(self.n_neighbors_))

            check_parameter(self.n_neighbors_, 1, self.n_train_,
                            include_left=True, include_right=True)

        self._set_n_classes(y)
        self.decision_scores_ = self.decision_function(X)
        self._process_decision_scores()

        return self

    def decision_function(self, X):
        """Predict raw anomaly score of X using the fitted detector.
        The anomaly score of an input sample is computed based on different
        detector algorithms. For consistency, outliers are assigned with
        larger anomaly scores.

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The training input samples. Sparse matrices are accepted only
            if they are supported by the base estimator.

        Returns
        -------
        anomaly_scores : numpy array of shape (n_samples,)
            The anomaly score of the input samples.
        """
        if self.method.lower() == "fast":
            return self._cof_fast(X)
        elif self.method.lower() == "memory":
            return self._cof_memory(X)
        else:
            raise ValueError("method should be set to either \'fast\' or \'memory\'. Got %s" % self.method)

    def _cof_memory(self, X):
        """
        Connectivity-Based Outlier Factor (COF) Algorithm
        This function is called internally to calculate the
        Connectivity-Based Outlier Factor (COF) as an outlier
        score for observations.
        This function uses a memory efficient implementation at the cost of 
        speed.
        :return: numpy array containing COF scores for observations.
                 The greater the COF, the greater the outlierness.
        """
        #dist_matrix = np.array(distance_matrix(X, X))
        sbn_path_index = np.zeros((X.shape[0],self.n_neighbors_), dtype=np.int64)
        ac_dist, cof_ = np.zeros((X.shape[0])), np.zeros((X.shape[0]))
        for i in range(X.shape[0]):
            #sbn_path = np.argsort(dist_matrix[i])
            sbn_path = np.argsort(minkowski_distance(X[i,:],X,p=2))
            sbn_path_index[i,:] = sbn_path[1: self.n_neighbors_ + 1]
            cost_desc = np.zeros((self.n_neighbors_))
            for j in range(self.n_neighbors_):
                #cost_desc.append(
                #    np.min(dist_matrix[sbn_path[j + 1]][sbn_path][:j + 1]))
                cost_desc[j] = np.min(minkowski_distance(X[sbn_path[j + 1]],X,p=2)[sbn_path][:j + 1])
            acd = np.zeros((self.n_neighbors_))
            for _h, cost_ in enumerate(cost_desc):
                neighbor_add1 = self.n_neighbors_ + 1
                acd[_h] = ((2. * (neighbor_add1 - (_h + 1))) / (neighbor_add1 * self.n_neighbors_)) * cost_
            ac_dist[i] = np.sum(acd)
        for _g in range(X.shape[0]):
            cof_[_g] = (ac_dist[_g] * self.n_neighbors_) / np.sum(ac_dist[sbn_path_index[_g]])
        return np.nan_to_num(cof_)
    
    def _cof_fast(self, X):
        """
        Connectivity-Based Outlier Factor (COF) Algorithm
        This function is called internally to calculate the
        Connectivity-Based Outlier Factor (COF) as an outlier
        score for observations.
        This function uses a fast implementation at the cost of memory.
        :return: numpy array containing COF scores for observations.
                 The greater the COF, the greater the outlierness.
        """
        dist_matrix = np.array(distance_matrix(X, X))
        sbn_path_index, ac_dist, cof_ = [], [], []
        for i in range(X.shape[0]):
            sbn_path = np.argsort(dist_matrix[i])
            sbn_path_index.append(sbn_path[1: self.n_neighbors_ + 1])
            cost_desc = []
            for j in range(self.n_neighbors_):
                cost_desc.append(
                    np.min(dist_matrix[sbn_path[j + 1]][sbn_path][:j + 1]))
            acd = []
            for _h, cost_ in enumerate(cost_desc):
                neighbor_add1 = self.n_neighbors_ + 1
                acd.append(((2. * (neighbor_add1 - (_h + 1))) / (
                        neighbor_add1 * self.n_neighbors_)) * cost_)
            ac_dist.append(np.sum(acd))
        for _g in range(X.shape[0]):
            cof_.append((ac_dist[_g] * self.n_neighbors_) /
                        np.sum(itemgetter(*sbn_path_index[_g])(ac_dist)))
        return np.nan_to_num(cof_)