Spaces:
Running
Running
File size: 15,066 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
"""
This function is adapted from [pyod] by [yzhao062]
Original source: [https://github.com/yzhao062/pyod]
"""
from __future__ import division
from __future__ import print_function
import numpy as np
import math
from numba import njit
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted
from .feature import Window
from .base import BaseDetector
from ..utils.utility import check_parameter, get_optimal_n_bins, invert_order
from ..utils.utility import zscore
class HBOS(BaseDetector):
"""Histogram- based outlier detection (HBOS) is an efficient unsupervised
method. It assumes the feature independence and calculates the degree
of outlyingness by building histograms. See :cite:`goldstein2012histogram`
for details.
Two versions of HBOS are supported:
- Static number of bins: uses a static number of bins for all features.
- Automatic number of bins: every feature uses a number of bins deemed to
be optimal according to the Birge-Rozenblac method
(:cite:`birge2006many`).
Parameters
----------
n_bins : int or string, optional (default=10)
The number of bins. "auto" uses the birge-rozenblac method for
automatic selection of the optimal number of bins for each feature.
alpha : float in (0, 1), optional (default=0.1)
The regularizer for preventing overflow.
tol : float in (0, 1), optional (default=0.5)
The parameter to decide the flexibility while dealing
the samples falling outside the bins.
contamination : float in (0., 0.5), optional (default=0.1)
The amount of contamination of the data set,
i.e. the proportion of outliers in the data set. Used when fitting to
define the threshold on the decision function.
Attributes
----------
bin_edges_ : numpy array of shape (n_bins + 1, n_features )
The edges of the bins.
hist_ : numpy array of shape (n_bins, n_features)
The density of each histogram.
decision_scores_ : numpy array of shape (n_samples,)
The outlier scores of the training data.
The higher, the more abnormal. Outliers tend to have higher
scores. This value is available once the detector is fitted.
threshold_ : float
The threshold is based on ``contamination``. It is the
``n_samples * contamination`` most abnormal samples in
``decision_scores_``. The threshold is calculated for generating
binary outlier labels.
labels_ : int, either 0 or 1
The binary labels of the training data. 0 stands for inliers
and 1 for outliers/anomalies. It is generated by applying
``threshold_`` on ``decision_scores_``.
"""
def __init__(self, slidingWindow=100, sub=True, n_bins=10, alpha=0.1, tol=0.5, contamination=0.1, normalize=True):
super(HBOS, self).__init__(contamination=contamination)
self.slidingWindow = slidingWindow
self.sub = sub
self.n_bins = n_bins
self.alpha = alpha
self.tol = tol
self.normalize = normalize
check_parameter(alpha, 0, 1, param_name='alpha')
check_parameter(tol, 0, 1, param_name='tol')
def fit(self, X, y=None):
"""Fit detector. y is ignored in unsupervised methods.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Fitted estimator.
"""
n_samples, n_features = X.shape
# Converting time series data into matrix format
X = Window(window = self.slidingWindow).convert(X)
if self.normalize: X = zscore(X, axis=1, ddof=1)
# validate inputs X and y (optional)
X = check_array(X)
self._set_n_classes(y)
_, n_features = X.shape[0], X.shape[1]
if isinstance(self.n_bins, str) and self.n_bins.lower() == "auto":
# Uses the birge rozenblac method for automatic histogram size per feature
self.hist_ = []
self.bin_edges_ = []
# build the histograms for all dimensions
for i in range(n_features):
n_bins = get_optimal_n_bins(X[:, i])
hist, bin_edges = np.histogram(X[:, i], bins=n_bins,
density=True)
self.hist_.append(hist)
self.bin_edges_.append(bin_edges)
# the sum of (width * height) should equal to 1
assert (np.isclose(1, np.sum(
hist * np.diff(bin_edges)), atol=0.1))
outlier_scores = _calculate_outlier_scores_auto(X, self.bin_edges_,
self.hist_,
self.alpha,
self.tol)
elif check_parameter(self.n_bins, low=2, high=np.inf):
self.hist_ = np.zeros([self.n_bins, n_features])
self.bin_edges_ = np.zeros([self.n_bins + 1, n_features])
# build the histograms for all dimensions
for i in range(n_features):
self.hist_[:, i], self.bin_edges_[:, i] = \
np.histogram(X[:, i], bins=self.n_bins, density=True)
# the sum of (width * height) should equal to 1
# assert (np.isclose(1, np.sum(
# self.hist_[:, i] * np.diff(self.bin_edges_[:, i])),
# atol=0.1))
outlier_scores = _calculate_outlier_scores(X, self.bin_edges_,
self.hist_,
self.n_bins,
self.alpha, self.tol)
# invert decision_scores_. Outliers comes with higher outlier scores
self.decision_scores_ = invert_order(np.sum(outlier_scores, axis=1))
# padded decision_scores_
if self.decision_scores_.shape[0] < n_samples:
self.decision_scores_ = np.array([self.decision_scores_[0]]*math.ceil((self.slidingWindow-1)/2) +
list(self.decision_scores_) + [self.decision_scores_[-1]]*((self.slidingWindow-1)//2))
self._process_decision_scores()
return self
def decision_function(self, X):
"""Predict raw anomaly score of X using the fitted detector.
The anomaly score of an input sample is computed based on different
detector algorithms. For consistency, outliers are assigned with
larger anomaly scores.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only
if they are supported by the base estimator.
Returns
-------
anomaly_scores : numpy array of shape (n_samples,)
The anomaly score of the input samples.
"""
check_is_fitted(self, ['hist_', 'bin_edges_'])
n_samples, n_features = X.shape
# Converting time series data into matrix format
X = Window(window = self.slidingWindow).convert(X)
if self.normalize: X = zscore(X, axis=1, ddof=1)
X = check_array(X)
if isinstance(self.n_bins, str) and self.n_bins.lower() == "auto":
outlier_scores = _calculate_outlier_scores_auto(X, self.bin_edges_,
self.hist_,
self.alpha,
self.tol)
elif check_parameter(self.n_bins, low=2, high=np.inf):
outlier_scores = _calculate_outlier_scores(X, self.bin_edges_,
self.hist_,
self.n_bins,
self.alpha, self.tol)
# invert outlier scores. Outliers comes with higher outlier scores
decision_scores_ = invert_order(np.sum(outlier_scores, axis=1))
# padded decision_scores_
if decision_scores_.shape[0] < n_samples:
decision_scores_ = np.array([decision_scores_[0]]*math.ceil((self.slidingWindow-1)/2) +
list(decision_scores_) + [decision_scores_[-1]]*((self.slidingWindow-1)//2))
return decision_scores_
# @njit #due to variable size of histograms, can no longer naively use numba for jit
def _calculate_outlier_scores_auto(X, bin_edges, hist, alpha,
tol): # pragma: no cover
"""The internal function to calculate the outlier scores based on
the bins and histograms constructed with the training data. The program
is optimized through numba. It is excluded from coverage test for
eliminating the redundancy.
Parameters
----------
X : numpy array of shape (n_samples, n_features
The input samples.
bin_edges : list of length n_features containing numpy arrays
The edges of the bins.
hist : =list of length n_features containing numpy arrays
The density of each histogram.
alpha : float in (0, 1)
The regularizer for preventing overflow.
tol : float in (0, 1)
The parameter to decide the flexibility while dealing
the samples falling outside the bins.
Returns
-------
outlier_scores : numpy array of shape (n_samples, n_features)
Outlier scores on all features (dimensions).
"""
n_samples, n_features = X.shape[0], X.shape[1]
outlier_scores = np.zeros(shape=(n_samples, n_features))
for i in range(n_features):
# Find the indices of the bins to which each value belongs.
# See documentation for np.digitize since it is tricky
# >>> x = np.array([0.2, 6.4, 3.0, 1.6, -1, 100, 10])
# >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
# >>> np.digitize(x, bins, right=True)
# array([1, 4, 3, 2, 0, 5, 4], dtype=int64)
bin_inds = np.digitize(X[:, i], bin_edges[i], right=True)
# Calculate the outlying scores on dimension i
# Add a regularizer for preventing overflow
out_score_i = np.log2(hist[i] + alpha)
optimal_n_bins = get_optimal_n_bins(X[:, i])
for j in range(n_samples):
# If the sample does not belong to any bins
# bin_ind == 0 (fall outside since it is too small)
if bin_inds[j] == 0:
dist = bin_edges[i][0] - X[j, i]
bin_width = bin_edges[i][1] - bin_edges[i][0]
# If it is only slightly lower than the smallest bin edge
# assign it to bin 1
if dist <= bin_width * tol:
outlier_scores[j, i] = out_score_i[0]
else:
outlier_scores[j, i] = np.min(out_score_i)
# If the sample does not belong to any bins
# bin_ind == optimal_n_bins+1 (fall outside since it is too large)
elif bin_inds[j] == optimal_n_bins + 1:
dist = X[j, i] - bin_edges[i][-1]
bin_width = bin_edges[i][-1] - bin_edges[i][-2]
# If it is only slightly larger than the largest bin edge
# assign it to the last bin
if dist <= bin_width * tol:
outlier_scores[j, i] = out_score_i[optimal_n_bins - 1]
else:
outlier_scores[j, i] = np.min(out_score_i)
else:
outlier_scores[j, i] = out_score_i[bin_inds[j] - 1]
return outlier_scores
@njit
def _calculate_outlier_scores(X, bin_edges, hist, n_bins, alpha,
tol): # pragma: no cover
"""The internal function to calculate the outlier scores based on
the bins and histograms constructed with the training data. The program
is optimized through numba. It is excluded from coverage test for
eliminating the redundancy.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
bin_edges : numpy array of shape (n_bins + 1, n_features )
The edges of the bins.
hist : numpy array of shape (n_bins, n_features)
The density of each histogram.
n_bins : int
The number of bins.
alpha : float in (0, 1)
The regularizer for preventing overflow.
tol : float in (0, 1)
The parameter to decide the flexibility while dealing
the samples falling outside the bins.
Returns
-------
outlier_scores : numpy array of shape (n_samples, n_features)
Outlier scores on all features (dimensions).
"""
n_samples, n_features = X.shape[0], X.shape[1]
outlier_scores = np.zeros(shape=(n_samples, n_features))
for i in range(n_features):
# Find the indices of the bins to which each value belongs.
# See documentation for np.digitize since it is tricky
# >>> x = np.array([0.2, 6.4, 3.0, 1.6, -1, 100, 10])
# >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
# >>> np.digitize(x, bins, right=True)
# array([1, 4, 3, 2, 0, 5, 4], dtype=int64)
bin_inds = np.digitize(X[:, i], bin_edges[:, i], right=True)
# Calculate the outlying scores on dimension i
# Add a regularizer for preventing overflow
out_score_i = np.log2(hist[:, i] + alpha)
for j in range(n_samples):
# If the sample does not belong to any bins
# bin_ind == 0 (fall outside since it is too small)
if bin_inds[j] == 0:
dist = bin_edges[0, i] - X[j, i]
bin_width = bin_edges[1, i] - bin_edges[0, i]
# If it is only slightly lower than the smallest bin edge
# assign it to bin 1
if dist <= bin_width * tol:
outlier_scores[j, i] = out_score_i[0]
else:
outlier_scores[j, i] = np.min(out_score_i)
# If the sample does not belong to any bins
# bin_ind == n_bins+1 (fall outside since it is too large)
elif bin_inds[j] == n_bins + 1:
dist = X[j, i] - bin_edges[-1, i]
bin_width = bin_edges[-1, i] - bin_edges[-2, i]
# If it is only slightly larger than the largest bin edge
# assign it to the last bin
if dist <= bin_width * tol:
outlier_scores[j, i] = out_score_i[n_bins - 1]
else:
outlier_scores[j, i] = np.min(out_score_i)
else:
outlier_scores[j, i] = out_score_i[bin_inds[j] - 1]
return outlier_scores |