File size: 12,990 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""
This function is adapted from [M2N2] by [Dongmin Kim et al.]
Original source: [https://github.com/carrtesy/M2N2]
Reimplemented by: [EmorZz1G]
"""
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F

from .base import BaseDetector
from ..utils.torch_utility import EarlyStoppingTorch, get_gpu
from torch.utils.data import DataLoader
from ..utils.dataset import ReconstructDataset
from typing import Literal
        

# models
'''
Basic MLP implementation by:
Dongmin Kim (tommy.dm.kim@gmail.com)
'''
class Detrender(nn.Module):
    def __init__(self, num_features: int, gamma=0.99):
        """
        :param num_features: the number of features or channels
        :param eps: a value added for numerical stability
        """
        super(Detrender, self).__init__()
        self.num_features = num_features
        self.gamma = gamma
        self.mean = nn.Parameter(torch.zeros(1, 1, self.num_features), requires_grad=False)


    def forward(self, x, mode:str):
        if mode == 'norm':
            x = self._normalize(x)
        elif mode == 'denorm':
            x = self._denormalize(x)
        else: raise NotImplementedError
        return x


    def _update_statistics(self, x):
        dim2reduce = tuple(range(0, x.ndim-1))
        mu = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
        self.mean.lerp_(mu, 1-self.gamma)

    def _set_statistics(self, x:torch.Tensor):
        self.mean = nn.Parameter(x, requires_grad=False)

    def _normalize(self, x):
        x = x - self.mean
        return x

    def _denormalize(self, x):
        x = x + self.mean
        return x


class MLP(nn.Module):
    def __init__(self, seq_len, num_channels, latent_space_size, gamma, normalization="None"):
        super().__init__()
        self.L, self.C = seq_len, num_channels
        self.encoder = Encoder(seq_len*num_channels, latent_space_size)
        self.decoder = Decoder(seq_len*num_channels, latent_space_size)
        self.normalization = normalization

        if self.normalization == "Detrend":
            self.use_normalizer = True
            self.normalizer = Detrender(num_channels, gamma=gamma)
        else:
            self.use_normalizer = False


    def forward(self, X):
        B, L, C = X.shape
        assert (L == self.L) and (C == self.C)

        if self.use_normalizer:
            X = self.normalizer(X, "norm")
            
        z = self.encoder(X.reshape(B, L*C))
        out = self.decoder(z).reshape(B, L, C)

        if self.use_normalizer:
            out = self.normalizer(out, "denorm")
        return out


class Encoder(nn.Module):
    def __init__(self, input_size, latent_space_size):
        super().__init__()
        self.linear1 = nn.Linear(input_size, input_size // 2)
        self.relu1 = nn.ReLU()
        self.linear2 = nn.Linear(input_size // 2, input_size // 4)
        self.relu2 = nn.ReLU()
        self.linear3 = nn.Linear(input_size // 4, latent_space_size)
        self.relu3 = nn.ReLU()

    def forward(self, x):
        x = self.linear1(x)
        x = self.relu1(x)
        x = self.linear2(x)
        x = self.relu2(x)
        x = self.linear3(x)
        x = self.relu3(x)
        return x


class Decoder(nn.Module):
    def __init__(self, input_size, latent_space_size):
        super().__init__()
        self.linear1 = nn.Linear(latent_space_size, input_size // 4)
        self.relu1 = nn.ReLU()
        self.linear2 = nn.Linear(input_size // 4, input_size // 2)
        self.relu2 = nn.ReLU()
        self.linear3 = nn.Linear(input_size // 2, input_size)

    def forward(self, x):
        x = self.linear1(x)
        x = self.relu1(x)
        x = self.linear2(x)
        x = self.relu2(x)
        out = self.linear3(x)
        return out


class MLP_Trainer:
    def __init__(
            self, model, train_loader, valid_loader=None,
            epochs=10, lr=1e-3, L2_reg=0, device='cuda'
        ):
        self.model = model
        self.train_loader = train_loader
        self.valid_loader = valid_loader
        self.device = device
        self.epochs = epochs
        self.optimizer = torch.optim.AdamW(
            params=self.model.parameters(), lr=lr, weight_decay=L2_reg)

    def train(self):
        train_iterator = tqdm(
            range(1, self.epochs + 1),
            total=self.epochs,
            desc="training epochs",
            leave=True
        )
        if self.valid_loader is not None:
            early_stop = EarlyStoppingTorch(patience=5)
        for epoch in train_iterator:
            train_stats = self.train_epoch()
            if self.valid_loader is not None:
                valid_loss = self.valid()
                early_stop(valid_loss, self.model)
                if early_stop.early_stop:
                    break

    def train_epoch(self):
        self.model.train()
        train_summary = 0.0
        for i, batch_data in enumerate(self.train_loader):
            train_log = self._process_batch(batch_data)
            train_summary += train_log["summary"]
        train_summary /= len(self.train_loader)
        return train_summary

    def _process_batch(self, batch_data) -> dict:
        X = batch_data[0].to(self.device)
        B, L, C = X.shape
        # recon
        Xhat = self.model(X)
        # optimize
        self.optimizer.zero_grad()
        loss = F.mse_loss(Xhat, X)
        loss.backward()
        self.optimizer.step()
        out = {
            "recon_loss": loss.item(),
            "summary": loss.item(),
        }
        return out

    @torch.no_grad()
    def valid(self):
        assert self.valid_loader is not None, 'cannot valid without any data'
        self.model.eval()
        for i, batch_data in enumerate(self.valid_loader):
            X = batch_data[0].to(self.device)
            Xhat = self.model(X)
            loss = F.mse_loss(Xhat, X)
        return loss.item()

class MLP_Tester:
    def __init__(self, model, train_loader, test_loader, lr=1e-3, device='cuda'):
        self.model = model
        self.train_loader = train_loader
        self.test_loader = test_loader
        self.device = device
        self.lr = lr

    @torch.no_grad()
    def offline(self, dataloader):
        self.model.eval()
        it = tqdm(
            dataloader,
            total=len(dataloader),
            desc="offline inference",
            leave=True
        )
        recon_errors = []
        for i, batch_data in enumerate(it):
            X = batch_data[0].to(self.device)
            B, L, C = X.shape
            Xhat = self.model(X)
            recon_error = F.mse_loss(Xhat, X, reduction='none')
            recon_error = recon_error.detach().cpu().numpy()
            recon_errors.append(recon_error)
            torch.cuda.empty_cache()
        recon_errors = np.concatenate(recon_errors, axis=0) # (B, L, C)
        anomaly_scores = recon_errors.mean(axis=2).reshape(-1) # (B, L) => (B*L,)
        return anomaly_scores

    def online(self, dataloader, init_thr, normalization="None"):
        self.model.train()
        it = tqdm(
            dataloader,
            total=len(dataloader),
            desc="online inference",
            leave=True
        )
        tau = init_thr
        TT_optimizer = torch.optim.SGD(
            [p for p in self.model.parameters()], lr=self.lr)

        Xs, Xhats = [], []
        preds = []
        As, thrs = [], []
        update_count = 0
        for i, batch_data in enumerate(it):
            X = batch_data[0].to(self.device)
            B, L, C = X.shape
            # Update of test-time statistics.
            if normalization == "Detrend":
                self.model.normalizer._update_statistics(X)
            # inference
            Xhat = self.model(X)
            E = (Xhat-X)**2
            A = E.mean(dim=2)
            # A: (B, L, C) -> (B, L)
            ytilde = (A >= tau).float()
            pred = ytilde
            # log model outputs
            Xs.append(X)
            Xhats.append(Xhat.clone().detach())
            # generate anomaly scores for each time step
            As.append(A.clone().detach())
            preds.append(pred.clone().detach())
            thrs.append(tau)
            # learn new-normals
            TT_optimizer.zero_grad()
            mask = (ytilde == 0)
            recon_loss = (A * mask).mean()
            recon_loss.backward()
            TT_optimizer.step()
            update_count += torch.sum(mask).item()
        # outputs
        anoscs = torch.cat(As, axis=0).reshape(-1).detach().cpu().numpy()
        print('total update count:', update_count)
        return anoscs

class M2N2(BaseDetector):
    def __init__(self, 
                 win_size=12,
                 stride=12,
                 num_channels=1, 
                 batch_size=64,
                 epochs=10,
                 latent_dim=128,
                 lr=1e-3,
                 ttlr=1e-3, # learning rate for online test-time adaptation
                 normalization="Detrend",
                 gamma=0.99,
                 th=0.95, # 95 percentile == 0.95 quantile
                 valid_size=0.2,
                 infer_mode='online'):
        self.model_name = 'M2N2'
        self.normalization = normalization
        self.device = get_gpu(True)
        self.model = MLP(
            seq_len=win_size,
            num_channels=num_channels,
            latent_space_size=latent_dim,
            gamma=gamma,
            normalization=normalization,
        ).to(self.device)
        
        self.th = th
        self.lr = lr
        self.ttlr = ttlr
        self.epochs = epochs
        self.batch_size = batch_size
        self.win_size = win_size
        self.stride = stride
        self.valid_size = valid_size
        self.infer_mode = infer_mode
        
    def fit(self, data):
        if self.valid_size is None:
            self.train_loader = DataLoader(
                dataset=ReconstructDataset(
                    data, window_size=self.win_size, stride=self.stride),
                batch_size=self.batch_size,
                shuffle=True
            )
            self.valid_loader = None
        else:
            data_train = data[:int((1-self.valid_size)*len(data))]
            data_valid = data[int((1-self.valid_size)*len(data)):]
            self.train_loader = DataLoader(
                dataset=ReconstructDataset(
                    data_train, window_size=self.win_size, stride=self.stride),
                batch_size=self.batch_size,
                shuffle=True
            )
            self.valid_loader = DataLoader(
                dataset=ReconstructDataset(
                    data_valid, window_size=self.win_size, stride=self.stride),
                batch_size=self.batch_size,
                shuffle=False,
            )

        self.trainer = MLP_Trainer(
            model=self.model,
            train_loader=self.train_loader,
            valid_loader=self.valid_loader,
            epochs=self.epochs,
            lr=self.lr,
            device=self.device
        )
        self.trainer.train()

        self.tester = MLP_Tester(
            model=self.model,
            train_loader=self.train_loader,
            test_loader=self.train_loader,
            lr=self.ttlr,
            device=self.device,
        )
        train_anoscs = self.tester.offline(self.train_loader)
        self.tau = np.quantile(train_anoscs, self.th)
        print('tau', self.tau)

    def decision_function(self, data):
        self.test_loader = DataLoader(
            dataset=ReconstructDataset(
                data, window_size=self.win_size, stride=self.stride),
            batch_size=self.batch_size,
            shuffle=False,
        )
        self.tester = MLP_Tester(
            model=self.model,
            train_loader=self.train_loader,
            test_loader=self.test_loader,
            lr=self.ttlr,
            device=self.device,
        )
        if self.infer_mode == 'online':
            anoscs = self.tester.online(
                self.test_loader, self.tau,
                normalization=self.normalization)
        else:
            anoscs = self.tester.offline(self.test_loader)

        self.decision_scores_ = pad_by_edge_value(anoscs, len(data), mode='right')
        return self.decision_scores_


def pad_by_edge_value(scores, target_len, mode: Literal['both', 'left', 'right']):
    scores = np.array(scores).reshape(-1)
    assert len(scores) <= target_len, f'the length of scores is more than target one'
    print(f'origin length: {len(scores)}; target length: {target_len}')
    current_len = scores.shape[0]
    pad_total = max(target_len-current_len, 0)
    if mode == 'left':
        pad_before = pad_total
    elif mode == 'right':
        pad_before = 0
    else:
        pad_before = pad_total // 2 + 1
    pad_after = pad_total - pad_before
    padded_scores = np.pad(scores, (pad_before, pad_after), mode='edge')
    return padded_scores