Spaces:
Running
Running
File size: 15,493 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import time
import os
import math
import pickle
import sys
from tqdm import tqdm
import pandas as pd
import numpy as np
from numpy.random import randint
from numpy.linalg import norm, eigh
from numpy.fft import fft, ifft
from tslearn.clustering import KShape
# from tslearn.cycc import cdist_normalized_cc, y_shifted_sbd_vec
from tslearn.metrics import cdist_normalized_cc, y_shifted_sbd_vec
from tslearn.utils import to_time_series_dataset,to_time_series
import stumpy
class SAND():
"""
Online and offline method that use a set of weighted subsequences (Theta) to identify anomalies.
The anomalies are identified by computing the distance of a given subsequence (the targeted
subsequence to analyze) to Theta
----------
subsequence_length : int : subsequence length to analyze
pattern_length : int (greater than pattern length): length of the subsequences in Theta
k : int (greater than 1) : number of subsequences in Theta
online : Boolean, Compute the analysis online or offline
- Online: run per batch the model update and the computation of the score
(requires the set alpha, init_length, and batch_size)
- Offline: run the model for one unique batch
alpha : float ([0,1]) : update rate (used in Online mode only)
init_length : int (greater than subsequence_length) : length of the initial batch (used in Online mode only)
batch_size : int (greater than subsequence_length) : length of the batches (used in Online mode only)
"""
def __init__(self,pattern_length,subsequence_length,k=6):
# Configuration parameter
self.current_time = 0
self.mean = -1
self.std = -1
# algorithm parameter
self.k = k
self.subsequence_length = subsequence_length
self.pattern_length = pattern_length
# real time evolving storage
self.clusters = []
self.new_clusters_dist = []
self.nm_current_weight = []
self.S = []
self.clusters_subseqs = []
"""
Build the model and compute the anoamly score
----------
X : np.array or List, the time series to analyse
online : Boolean, Compute the analysis online or offline
- Online: run per batch the model update and the computation of the score
(requires the set alpha, init_length, and batch_size)
- Offline: run the model for one unique batch
alpha : float ([0,1]) : update rate (used in Online mode only)
init_length : int (greater than subsequence_length) : length of the initial batch (used in Online mode only)
batch_size : int (greater than subsequence_length) : length of the batches (used in Online mode only)
overlapping rate (smaller than len(X)//2 and batch_size//2) : Number points seperating subsequences in the time series.
"""
def fit(self,X, y=None, online=False, alpha=None, init_length=None, batch_size=None, overlaping_rate=10, verbose=True):
# Take subsequence every 'overlaping_rate' points
# Change it to 1 for completely overlapping subsequences
# Change it to 'subsequence_length' for non-overlapping subsequences
# Change it to 'subsequence_length//4' for non-trivial matching subsequences
self.overlaping_rate = overlaping_rate
self.ts = list(X)
self.decision_scores_ = []
if online:
if (alpha is None) or (init_length is None) or (batch_size is None):
print("You must specify a value for alpha, init_length, and batch_size")
return None
self.alpha = alpha
self.init_length = init_length
self.batch_size = batch_size
if verbose:
print(self.current_time,end='-->')
self._initialize()
self._set_normal_model()
self.decision_scores_ = self._run(self.ts[:min(len(self.ts),self.current_time)])
while self.current_time < len(self.ts)-self.subsequence_length:
if verbose:
print(self.current_time,end='-->')
self._run_next_batch()
self._set_normal_model()
if self.current_time < len(self.ts)-self.subsequence_length:
self.decision_scores_ += self._run(self.ts[self.current_time-self.batch_size:min(len(self.ts),self.current_time)])
else:
self.decision_scores_ += self._run(self.ts[self.current_time-self.batch_size:])
if verbose:
print("[STOP]: score length {}".format(len(self.decision_scores_)))
else:
self.init_length = len(X)
self.alpha = 0.5
self.batch_size = 0
self._initialize()
self._set_normal_model()
self.decision_scores_ = self._run(self.ts)
self.decision_scores_ = np.array(self.decision_scores_)
# Computation of the anomaly score
def _run(self,ts):
all_join = []
all_activated_weighted = []
if len(self.nm_current_weight) != len(self.weights):
self.nm_current_weight = self.nm_current_weight + self.weights[len(self.nm_current_weight):]
for index_name in range(len(self.clusters)):
if self.nm_current_weight[index_name]> 0:
join = stumpy.stump(ts,self.pattern_length,self.clusters[index_name][0],ignore_trivial = False)[:,0]
join = np.array(join)
join = np.nan_to_num(join)
all_join.append(join)
join = [0]*len(all_join[0])
for sub_join,scores_sub_join,scores_sub_join_old,t_decay in zip(all_join,self.weights,self.nm_current_weight,self.time_decay):
new_w = float(scores_sub_join)/float(1+max(0,t_decay-self.batch_size))
update_w = float(1-self.alpha)*float(scores_sub_join_old) + float(self.alpha)*float(new_w)
join = [float(j) + float(sub_j)*update_w for j,sub_j in zip(list(join),list(sub_join))]
all_activated_weighted.append(update_w)
join = join + [join[-1]]*(self.pattern_length-1)
join = np.array(join)/np.sum(all_activated_weighted)
join = self._running_mean(join,self.pattern_length)
join = [join[0]]*(self.pattern_length-1) + list(join)
self.nm_current_weight = all_activated_weighted
if self.mean == -1:
self.mean = np.mean(join)
self.std = np.std(join)
else:
self.mean = (1-self.alpha)*self.mean + self.alpha*np.mean(join)
self.std = (1-self.alpha)*self.std + self.alpha*np.std(join)
join = (np.array(join) - self.mean)/self.std
return list(np.nan_to_num(join))
# MAIN METHODS:
# - Initialization
# - Theta update for next batch
# - Score computaiton
# Initialization of the model
def _initialize(self):
cluster_subseqs,clusters = self._kshape_subsequence(initialization=True)
all_mean_dist = []
for i,(cluster,cluster_subseq) in enumerate(zip(clusters,cluster_subseqs)):
self._set_initial_S(cluster_subseq,i,cluster[0])
all_mean_dist.append(self._compute_mean_dist(cluster[0],cluster[1]))
self.clusters = clusters
self.new_clusters_dist = all_mean_dist
self.current_time = self.init_length
# Model update for next batch
def _run_next_batch(self):
# Run K-Shape algorithm on the subsequences of the current batch
cluster_subseqs,clusters = self._kshape_subsequence(initialization=False)
#self.new_clusters_subseqs = cluster_subseqs
self.new_clusters_to_merge = clusters
to_add = [[] for i in range(len(self.clusters))]
new_c = []
# Finding the clusters that match exisiting clusters
# - Storing in to_add all the clusters that have to be merged with the existing clusters
# - Storing in new_c tyhe new clusters to be added.
for cluster,cluster_subseq in zip(clusters,cluster_subseqs):
min_dist = np.inf
tmp_index = -1
for index_o,origin_cluster in enumerate(self.clusters):
new_dist = self._sbd(origin_cluster[0],cluster[0])[0]
if min_dist > new_dist:
min_dist = new_dist
tmp_index = index_o
if tmp_index != -1:
if min_dist < self.new_clusters_dist[tmp_index]:
to_add[tmp_index].append((cluster,cluster_subseq))
else:
new_c.append((cluster,cluster_subseq))
self.to_add = to_add
self.new_c = new_c
new_clusters = []
all_mean_dist = []
# Merging existing clusters with new clusters
for i,(cur_c,t_a) in enumerate(zip(self.clusters,to_add)):
# Check if new subsequences to add
if len(t_a) > 0:
all_index = cur_c[1]
all_sub_to_add = []
for t_a_s in t_a:
all_index += t_a_s[0][1]
all_sub_to_add += t_a_s[1]
# Updating the centroid shape
new_centroid,_ = self._extract_shape_stream(all_sub_to_add,i,cur_c[0],initial=False)
new_clusters.append((self._clean_cluster_tslearn(new_centroid),all_index))
# Updating the intra cluster distance
dist_to_add = self._compute_mean_dist(cur_c[0],all_index)
ratio = float(len(cur_c[1]))/float(len(cur_c[1]) + len(all_index))
all_mean_dist.append( (ratio) * self.new_clusters_dist[i] + (1.0 - ratio) * dist_to_add )
# If no new subsequences to add, copy the old cluster
else:
new_clusters.append(cur_c)
all_mean_dist.append(self.new_clusters_dist[i])
# Adding new clusters
for i,t_a in enumerate(new_c):
self._set_initial_S(t_a[1],len(self.clusters) + i,t_a[0][0])
new_clusters.append((t_a[0][0],t_a[0][1]))
all_mean_dist.append(self._compute_mean_dist(t_a[0][0],t_a[0][1]))
self.clusters = new_clusters
self.new_clusters_dist = all_mean_dist
self.current_time = self.current_time + self.batch_size
# SBD distance
def _sbd(self,x, y):
ncc = self._ncc_c(x, y)
idx = ncc.argmax()
dist = 1 - ncc[idx]
return dist, None
# Core clustering computation unit
def _kshape_subsequence(self,initialization=True):
all_subsequences = []
idxs = []
if initialization:
nb_subsequence = self.init_length
else:
nb_subsequence = self.batch_size
for i in range(self.current_time,min(self.current_time + nb_subsequence,len(self.ts)-self.subsequence_length),self.overlaping_rate):
all_subsequences.append(self.ts[i:i+self.subsequence_length])
idxs.append(i)
ks = KShape(n_clusters=self.k,verbose=False)
list_label = ks.fit_predict(np.array(all_subsequences))
cluster_subseq = [[] for i in range(self.k)]
cluster_idx = [[] for i in range(self.k)]
for lbl,idx in zip(list_label,idxs):
cluster_idx[lbl].append(idx)
cluster_subseq[lbl].append(self.ts[idx:idx+self.subsequence_length])
# safety check
new_cluster_subseq = []
clusters = []
for i in range(self.k):
if len(cluster_subseq[i]) > 0:
new_cluster_subseq.append(cluster_subseq[i])
clusters.append((self._clean_cluster_tslearn(ks.cluster_centers_[i]),cluster_idx[i]))
return new_cluster_subseq,clusters
# Model elements update
def _set_normal_model(self):
Frequency = []
Centrality = []
Time_decay = []
for i,nm in enumerate(self.clusters):
Frequency.append(float(len(nm[1])))
Time_decay.append(float(self.current_time)-float(nm[1][-1]))
dist_nms = 0
for j,nm_t in enumerate(self.clusters):
if j != i:
dist_nms += self._sbd(nm[0],nm_t[0])[0]
Centrality.append(dist_nms)
Frequency = list((np.array(Frequency) - min(Frequency))/(max(Frequency) - min(Frequency)+0.0000001)+1)
Centrality = list((np.array(Centrality) - min(Centrality))/(max(Centrality) - min(Centrality)+0.0000001)+1)
weights = []
for f,c,t in zip(Frequency,Centrality,Time_decay):
weights.append(float(f)**2/float(c))
self.weights = weights
self.time_decay = Time_decay
# Setting in memory the matrix S
def _set_initial_S(self,X,idx,cluster_centers):
X = to_time_series_dataset(X)
cluster_centers = to_time_series(cluster_centers)
sz = X.shape[1]
Xp = y_shifted_sbd_vec(cluster_centers, X,
norm_ref=-1,
norms_dataset=np.linalg.norm(X, axis=(1, 2)))
S = np.dot(Xp[:, :, 0].T, Xp[:, :, 0])
self.S.append(S)
# Computation of the updated centroid
def _extract_shape_stream(self,X,idx,cluster_centers,initial=True):
X = to_time_series_dataset(X)
cluster_centers = to_time_series(cluster_centers)
sz = X.shape[1]
Xp = y_shifted_sbd_vec(cluster_centers, X,
norm_ref=-1,
norms_dataset=np.linalg.norm(X, axis=(1, 2)))
S = np.dot(Xp[:, :, 0].T, Xp[:, :, 0])
if not initial:
S = S + self.S[idx]
self.S[idx] = S
Q = np.eye(sz) - np.ones((sz, sz)) / sz
M = np.dot(Q.T, np.dot(S, Q))
_, vec = np.linalg.eigh(M)
mu_k = vec[:, -1].reshape((sz, 1))
dist_plus_mu = np.sum(np.linalg.norm(Xp - mu_k, axis=(1, 2)))
dist_minus_mu = np.sum(np.linalg.norm(Xp + mu_k, axis=(1, 2)))
if dist_minus_mu < dist_plus_mu:
mu_k *= -1
return self._zscore(mu_k, ddof=1),S
# Reset value of a cluster
def _clean_cluster_tslearn(self,cluster):
return np.array([val[0] for val in cluster])
# Compute mean distance of a element in a cluster
def _compute_mean_dist(self,cluster,all_index):
dist_all = []
for i in all_index:
dist_all.append(self._sbd(self.ts[i:i+self.subsequence_length],cluster)[0])
return np.mean(dist_all)
def _running_mean(self,x,N):
return (np.cumsum(np.insert(x,0,0))[N:] - np.cumsum(np.insert(x,0,0))[:-N])/N
def _ncc_c(self,x, y):
den = np.array(norm(x) * norm(y))
den[den == 0] = np.inf
x_len = len(x)
fft_size = 1 << (2*x_len-1).bit_length()
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
return np.real(cc) / den
def _zscore(self,a, axis=0, ddof=0):
a = np.asanyarray(a)
mns = a.mean(axis=axis)
sstd = a.std(axis=axis, ddof=ddof)
if axis and mns.ndim < a.ndim:
res = ((a - np.expand_dims(mns, axis=axis)) /
np.expand_dims(sstd, axis=axis))
else:
res = (a - mns) / sstd
return np.nan_to_num(res) |