File size: 15,493 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import time
import os
import math
import pickle
import sys
from tqdm import tqdm
import pandas as pd


import numpy as np
from numpy.random import randint
from numpy.linalg import norm, eigh
from numpy.fft import fft, ifft

from tslearn.clustering import KShape
# from tslearn.cycc import cdist_normalized_cc, y_shifted_sbd_vec
from tslearn.metrics import cdist_normalized_cc, y_shifted_sbd_vec
from tslearn.utils import to_time_series_dataset,to_time_series

import stumpy



class SAND():
    

    """
    Online and offline method that use a set of weighted subsequences (Theta) to identify anomalies. 
    The anomalies are identified by computing the distance of a given subsequence (the targeted 
    subsequence to analyze) to Theta
    ----------
    subsequence_length : int : subsequence length to analyze
    pattern_length : int (greater than pattern length): length of the subsequences in Theta
    k : int (greater than 1) : number of subsequences in Theta

    online : Boolean, Compute the analysis online or offline
    - Online: run per batch the model update and the computation of the score
    (requires the set alpha, init_length, and batch_size)
    - Offline: run the model for one unique batch

    alpha : float ([0,1]) : update rate (used in Online mode only)
    init_length : int (greater than subsequence_length) : length of the initial batch (used in Online mode only)
    batch_size : int (greater than subsequence_length) : length of the batches (used in Online mode only)
    """
    def __init__(self,pattern_length,subsequence_length,k=6):
        
        # Configuration parameter
        self.current_time = 0
        self.mean = -1
        self.std = -1

        # algorithm parameter
        self.k = k
        self.subsequence_length = subsequence_length
        self.pattern_length = pattern_length
        
        # real time evolving storage
        self.clusters = []
        self.new_clusters_dist = []
        self.nm_current_weight = []
        self.S = []
        self.clusters_subseqs = []
    
    
    """
    Build the model and compute the anoamly score
    ----------
    X : np.array or List, the time series to analyse
    
    online : Boolean, Compute the analysis online or offline
    - Online: run per batch the model update and the computation of the score
    (requires the set alpha, init_length, and batch_size)
    - Offline: run the model for one unique batch

    alpha : float ([0,1]) : update rate (used in Online mode only)
    init_length : int (greater than subsequence_length) : length of the initial batch (used in Online mode only)
    batch_size : int (greater than subsequence_length) : length of the batches (used in Online mode only)
    overlapping rate (smaller than len(X)//2 and batch_size//2) : Number points seperating subsequences in the time series.
    """
    def fit(self,X, y=None, online=False, alpha=None, init_length=None, batch_size=None, overlaping_rate=10, verbose=True):
        # Take subsequence every 'overlaping_rate' points
        # Change it to 1 for completely overlapping subsequences 
        # Change it to 'subsequence_length' for non-overlapping subsequences 
        # Change it to 'subsequence_length//4' for non-trivial matching subsequences 
        self.overlaping_rate = overlaping_rate
        self.ts = list(X)
        self.decision_scores_ = []

        if online:
            if (alpha is None) or (init_length is None) or (batch_size is None):
                print("You must specify a value for alpha, init_length, and batch_size")
                return None
            
            self.alpha = alpha
            self.init_length = init_length
            self.batch_size = batch_size

            if verbose:
                print(self.current_time,end='-->')
            
            self._initialize()
            self._set_normal_model()
            self.decision_scores_ = self._run(self.ts[:min(len(self.ts),self.current_time)])

            while self.current_time < len(self.ts)-self.subsequence_length:

                if verbose:
                    print(self.current_time,end='-->')

                self._run_next_batch()
                self._set_normal_model()
                if self.current_time < len(self.ts)-self.subsequence_length:
                    self.decision_scores_ += self._run(self.ts[self.current_time-self.batch_size:min(len(self.ts),self.current_time)])
                else:
                    self.decision_scores_ += self._run(self.ts[self.current_time-self.batch_size:])

            if verbose:
                print("[STOP]: score length {}".format(len(self.decision_scores_)))


        else:
            self.init_length = len(X)
            self.alpha = 0.5
            self.batch_size = 0
            
            self._initialize()
            self._set_normal_model()
            self.decision_scores_ = self._run(self.ts)

        self.decision_scores_ = np.array(self.decision_scores_)


    # Computation of the anomaly score
    def _run(self,ts):
        all_join = []
        
        all_activated_weighted = []
        if len(self.nm_current_weight) != len(self.weights):
            self.nm_current_weight = self.nm_current_weight + self.weights[len(self.nm_current_weight):]

        for index_name in range(len(self.clusters)):
            if self.nm_current_weight[index_name]> 0:
                join = stumpy.stump(ts,self.pattern_length,self.clusters[index_name][0],ignore_trivial = False)[:,0]
                join = np.array(join)
                join = np.nan_to_num(join)
                all_join.append(join)

        join = [0]*len(all_join[0])
        
        for sub_join,scores_sub_join,scores_sub_join_old,t_decay in zip(all_join,self.weights,self.nm_current_weight,self.time_decay):
            new_w = float(scores_sub_join)/float(1+max(0,t_decay-self.batch_size))
            update_w = float(1-self.alpha)*float(scores_sub_join_old) + float(self.alpha)*float(new_w)

            join = [float(j) + float(sub_j)*update_w for j,sub_j in zip(list(join),list(sub_join))]
            all_activated_weighted.append(update_w)
        
        join = join + [join[-1]]*(self.pattern_length-1)
        join = np.array(join)/np.sum(all_activated_weighted)
        join = self._running_mean(join,self.pattern_length)
        join = [join[0]]*(self.pattern_length-1) + list(join)
        
        self.nm_current_weight = all_activated_weighted
        if self.mean == -1:
            self.mean = np.mean(join)
            self.std = np.std(join)
        else:
            self.mean = (1-self.alpha)*self.mean + self.alpha*np.mean(join)
            self.std = (1-self.alpha)*self.std + self.alpha*np.std(join)

        join = (np.array(join) - self.mean)/self.std
        


        return list(np.nan_to_num(join))


    # MAIN METHODS:
    # - Initialization
    # - Theta update for next batch
    # - Score computaiton

    # Initialization of the model
    def _initialize(self):
        
        cluster_subseqs,clusters = self._kshape_subsequence(initialization=True)

        all_mean_dist = []
        for i,(cluster,cluster_subseq) in enumerate(zip(clusters,cluster_subseqs)):
            self._set_initial_S(cluster_subseq,i,cluster[0])
            all_mean_dist.append(self._compute_mean_dist(cluster[0],cluster[1]))

        self.clusters = clusters
        self.new_clusters_dist = all_mean_dist
        self.current_time = self.init_length




    # Model update for next batch
    def _run_next_batch(self):
        
        # Run K-Shape algorithm on the subsequences of the current batch
        cluster_subseqs,clusters = self._kshape_subsequence(initialization=False)

        #self.new_clusters_subseqs = cluster_subseqs
        self.new_clusters_to_merge = clusters

        to_add = [[] for i in range(len(self.clusters))]
        new_c = []
        
        # Finding the clusters that match exisiting clusters
        # - Storing in to_add all the clusters that have to be merged with the existing clusters
        # - Storing in new_c tyhe new clusters to be added.
        for cluster,cluster_subseq in zip(clusters,cluster_subseqs):
            min_dist = np.inf
            tmp_index = -1
            for index_o,origin_cluster in enumerate(self.clusters):
                new_dist = self._sbd(origin_cluster[0],cluster[0])[0]
                if min_dist > new_dist:
                    min_dist = new_dist
                    tmp_index = index_o
            if tmp_index != -1: 
                if min_dist < self.new_clusters_dist[tmp_index]:
                    to_add[tmp_index].append((cluster,cluster_subseq))
                else:
                    new_c.append((cluster,cluster_subseq))
        
        self.to_add = to_add
        self.new_c = new_c
        
        new_clusters = []
        all_mean_dist = []
        # Merging existing clusters with new clusters
        for i,(cur_c,t_a) in enumerate(zip(self.clusters,to_add)): 
            # Check if new subsequences to add
            if len(t_a) > 0:
                all_index = cur_c[1]
                all_sub_to_add = []
                for t_a_s in t_a:
                    all_index += t_a_s[0][1]
                    all_sub_to_add +=  t_a_s[1]

                # Updating the centroid shape
                new_centroid,_ = self._extract_shape_stream(all_sub_to_add,i,cur_c[0],initial=False)
                new_clusters.append((self._clean_cluster_tslearn(new_centroid),all_index))

                # Updating the intra cluster distance
                dist_to_add = self._compute_mean_dist(cur_c[0],all_index)
                ratio = float(len(cur_c[1]))/float(len(cur_c[1]) + len(all_index))
                all_mean_dist.append( (ratio) * self.new_clusters_dist[i] + (1.0 - ratio) * dist_to_add )

            # If no new subsequences to add, copy the old cluster
            else:
                new_clusters.append(cur_c)
                all_mean_dist.append(self.new_clusters_dist[i])
        
        # Adding new clusters
        for i,t_a in enumerate(new_c):
            self._set_initial_S(t_a[1],len(self.clusters) + i,t_a[0][0])
            new_clusters.append((t_a[0][0],t_a[0][1]))
            all_mean_dist.append(self._compute_mean_dist(t_a[0][0],t_a[0][1]))
        

        self.clusters = new_clusters
        self.new_clusters_dist = all_mean_dist
        self.current_time = self.current_time + self.batch_size

    
    # SBD distance
    def _sbd(self,x, y):
        ncc = self._ncc_c(x, y)
        idx = ncc.argmax()
        dist = 1 - ncc[idx]
        return dist, None

    # Core clustering computation unit
    def _kshape_subsequence(self,initialization=True):
        all_subsequences = []
        idxs = []
        
        if initialization:
            nb_subsequence = self.init_length
        else:
            nb_subsequence = self.batch_size

        for i in range(self.current_time,min(self.current_time + nb_subsequence,len(self.ts)-self.subsequence_length),self.overlaping_rate):
            all_subsequences.append(self.ts[i:i+self.subsequence_length])
            idxs.append(i)
        
        ks = KShape(n_clusters=self.k,verbose=False)
        list_label = ks.fit_predict(np.array(all_subsequences))
        

        cluster_subseq = [[] for i in range(self.k)]
        cluster_idx = [[] for i in range(self.k)]
        for lbl,idx in zip(list_label,idxs):
            cluster_idx[lbl].append(idx)
            cluster_subseq[lbl].append(self.ts[idx:idx+self.subsequence_length])
        
        # safety check
        new_cluster_subseq = []
        clusters = []

        for i in range(self.k):
            if len(cluster_subseq[i]) > 0:
                new_cluster_subseq.append(cluster_subseq[i])
                clusters.append((self._clean_cluster_tslearn(ks.cluster_centers_[i]),cluster_idx[i]))
        return new_cluster_subseq,clusters




    # Model elements update
    def _set_normal_model(self):
        Frequency = []
        Centrality = []
        Time_decay = []
        for i,nm in enumerate(self.clusters):
            Frequency.append(float(len(nm[1])))
            Time_decay.append(float(self.current_time)-float(nm[1][-1]))
            dist_nms = 0
            for j,nm_t in enumerate(self.clusters):
                if j != i:
                    dist_nms += self._sbd(nm[0],nm_t[0])[0]
            Centrality.append(dist_nms)
            
        Frequency = list((np.array(Frequency) - min(Frequency))/(max(Frequency) - min(Frequency)+0.0000001)+1)
        Centrality = list((np.array(Centrality) - min(Centrality))/(max(Centrality) - min(Centrality)+0.0000001)+1)
        
        weights = []
        for f,c,t in zip(Frequency,Centrality,Time_decay):
            weights.append(float(f)**2/float(c))
        
        self.weights = weights
        self.time_decay = Time_decay
        
    # Setting in memory the matrix S
    def _set_initial_S(self,X,idx,cluster_centers):
        X = to_time_series_dataset(X)
        cluster_centers = to_time_series(cluster_centers)
        sz = X.shape[1]
        Xp = y_shifted_sbd_vec(cluster_centers, X,
                        norm_ref=-1,
                        norms_dataset=np.linalg.norm(X, axis=(1, 2)))
        S = np.dot(Xp[:, :, 0].T, Xp[:, :, 0])
        self.S.append(S)

    # Computation of the updated centroid
    def _extract_shape_stream(self,X,idx,cluster_centers,initial=True):
        X = to_time_series_dataset(X)
        cluster_centers = to_time_series(cluster_centers)
        sz = X.shape[1]
        Xp = y_shifted_sbd_vec(cluster_centers, X,
                        norm_ref=-1,
                        norms_dataset=np.linalg.norm(X, axis=(1, 2)))
        S = np.dot(Xp[:, :, 0].T, Xp[:, :, 0])

        if not initial:    
            S = S + self.S[idx]
        self.S[idx] = S
        Q = np.eye(sz) - np.ones((sz, sz)) / sz
        M = np.dot(Q.T, np.dot(S, Q))
        _, vec = np.linalg.eigh(M)
        mu_k = vec[:, -1].reshape((sz, 1))
        dist_plus_mu = np.sum(np.linalg.norm(Xp - mu_k, axis=(1, 2)))
        dist_minus_mu = np.sum(np.linalg.norm(Xp + mu_k, axis=(1, 2)))
        if dist_minus_mu < dist_plus_mu:
            mu_k *= -1

        return self._zscore(mu_k, ddof=1),S

    # Reset value of a cluster
    def _clean_cluster_tslearn(self,cluster):
        return np.array([val[0] for val in cluster])
    
    # Compute mean distance of a element in a cluster
    def _compute_mean_dist(self,cluster,all_index):
        dist_all = []
        for i in all_index:
            dist_all.append(self._sbd(self.ts[i:i+self.subsequence_length],cluster)[0])
        return np.mean(dist_all)

    def _running_mean(self,x,N):
        return (np.cumsum(np.insert(x,0,0))[N:] - np.cumsum(np.insert(x,0,0))[:-N])/N

    def _ncc_c(self,x, y):
        den = np.array(norm(x) * norm(y))
        den[den == 0] = np.inf

        x_len = len(x)
        fft_size = 1 << (2*x_len-1).bit_length()
        cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
        cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
        return np.real(cc) / den

    def _zscore(self,a, axis=0, ddof=0):
        a = np.asanyarray(a)
        mns = a.mean(axis=axis)
        sstd = a.std(axis=axis, ddof=ddof)
        if axis and mns.ndim < a.ndim:
            res = ((a - np.expand_dims(mns, axis=axis)) /
                   np.expand_dims(sstd, axis=axis))
        else:
            res = (a - mns) / sstd
        return np.nan_to_num(res)