Spaces:
Sleeping
Sleeping
File size: 25,743 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
import tqdm
import os
import textwrap
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from torch.utils.data import DataLoader
import warnings
from torch.utils.data import Dataset
from sklearn.preprocessing import StandardScaler
warnings.filterwarnings("ignore")
from .time_rcd.dataset import ChatTSTimeRCDPretrainDataset
from .time_rcd.TimeRCD_pretrain_multi import TimeSeriesPretrainModel, create_random_mask, collate_fn, test_collate_fn
from .time_rcd.time_rcd_config import TimeRCDConfig, default_config
from utils.dataset import TimeRCDDataset
class TimeRCDPretrainTester:
"""Tester class for visualizing pretrained model results."""
def __init__(self, checkpoint_path: str, config: TimeRCDConfig):
self.config = config
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.win_size = config.win_size
self.batch_size = config.batch_size
# Load model
self.model = TimeSeriesPretrainModel(config).to(self.device)
self.load_checkpoint(checkpoint_path)
self.model.eval()
print(f"Model loaded on device: {self.device}")
def load_checkpoint(self, checkpoint_path: str):
"""Load model from checkpoint."""
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=self.device)
# Handle different checkpoint formats
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
state_dict = checkpoint
# Remove 'module.' prefix if present (from DDP training)
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith('module.'):
new_key = key[7:] # Remove 'module.' prefix
else:
new_key = key
new_state_dict[new_key] = value
self.model.load_state_dict(new_state_dict)
print(f"Successfully loaded checkpoint from {checkpoint_path}")
def predict(self, batch):
"""Run inference on a batch."""
with torch.no_grad():
# Move data to device
time_series = batch['time_series'].to(self.device)
normal_time_series = batch['normal_time_series'].to(self.device)
masked_time_series = batch['masked_time_series'].to(self.device)
attribute = batch['attribute']
batch_size, seq_len, num_features = time_series.shape
# 瀵规椂闂村簭鍒楁爣鍑嗗寲
time_series = (time_series - time_series.mean(dim=1, keepdim=True)) / (time_series.std(dim=1, keepdim=True) + 1e-8)
masked_time_series = (masked_time_series - masked_time_series.mean(dim=1, keepdim=True)) / (masked_time_series.std(dim=1, keepdim=True) + 1e-8)
mask = batch['mask'].to(self.device)
labels = batch['labels'].to(self.device)
attention_mask = batch['attention_mask'].to(self.device)
# Get embeddings
local_embeddings = self.model(
time_series=time_series,
mask=attention_mask)
# Get reconstruction
reconstructed = self.model.reconstruction_head(local_embeddings)
reconstructed = reconstructed.view(batch_size, seq_len, num_features) # (B, seq_len, num_features)
# Get anomaly predictions
anomaly_logits = self.model.anomaly_head(local_embeddings)
anomaly_logits = torch.mean(anomaly_logits, dim=-2) # (B, seq_len, 2)
anomaly_probs = F.softmax(anomaly_logits, dim=-1)[..., 1] # Probability of anomaly (B, seq_len)
return {
'original': time_series.cpu(),
'normal': normal_time_series.cpu(),
'masked': masked_time_series.cpu(),
'reconstructed': reconstructed.cpu(),
'mask': mask.cpu(),
'anomaly_probs': anomaly_probs.cpu(),
'true_labels': labels.cpu(),
'attention_mask': attention_mask.cpu(),
'attribute': attribute
}
def visualize_single_sample(self, results, sample_idx=0, save_path=None):
"""Visualize results for a single time series sample."""
# Extract data for the specified sample
original = results['original'][sample_idx].squeeze(-1).numpy() # (seq_len, num_features) / (seq_len,)
normal = results['normal'][sample_idx].squeeze(-1).numpy()
masked = results['masked'][sample_idx].squeeze(-1).numpy()
reconstructed = results['reconstructed'][sample_idx].squeeze(-1).numpy()
mask = results['mask'][sample_idx].numpy().astype(bool)
anomaly_probs = results['anomaly_probs'][sample_idx].numpy() # (seq_len,)
true_labels = results['true_labels'][sample_idx].numpy() # (seq_len,)
attention_mask = results['attention_mask'][sample_idx].numpy().astype(bool)
attribute = results['attribute'][sample_idx]
# Only consider valid sequence length
valid_length = attention_mask.sum()
original = original[:valid_length]
normal = normal[:valid_length]
masked = masked[:valid_length]
reconstructed = reconstructed[:valid_length]
mask = mask[:valid_length]
anomaly_probs = anomaly_probs[:valid_length]
true_labels = true_labels[:valid_length]
# Create time axis
time_axis = np.arange(len(original))
assert original.ndim == normal.ndim == reconstructed.ndim == masked.ndim, "Original, normal, reconstructed, and masked time series must have the same dimensions."
if original.ndim == 1:
# Create subplots
fig, axes = plt.subplots(3, 1, figsize=(15, 12))
# 1. Reconstruction visualization
ax1 = axes[0]
ax1.plot(time_axis, original, 'b-', label='Original', linewidth=2, alpha=0.8)
ax1.plot(time_axis, masked, 'g--', label='Masked Input', linewidth=1.5, alpha=0.7)
ax1.plot(time_axis[mask], reconstructed[mask], 'ro',
label='Reconstructed', markersize=4, alpha=0.8)
# Highlight masked regions
mask_regions = []
in_mask = False
start_idx = 0
for i, is_masked in enumerate(mask):
if is_masked and not in_mask:
start_idx = i
in_mask = True
elif not is_masked and in_mask:
mask_regions.append((start_idx, i - 1))
in_mask = False
if in_mask: # Handle case where mask continues to the end
mask_regions.append((start_idx, len(mask) - 1))
for start, end in mask_regions:
ax1.axvspan(start, end, alpha=0.2, color='red',
label='Masked Region' if start == mask_regions[0][0] else "")
ax1.set_title('Time Series Reconstruction', fontsize=14, fontweight='bold')
ax1.set_xlabel('Time Steps')
ax1.set_ylabel('Value')
ax1.legend()
ax1.grid(True, alpha=0.3)
# 2. Anomaly detection visualization
ax2 = axes[1]
ax2.plot(time_axis, normal, 'g-', label='Normal Time Series', linewidth=1, alpha=0.6)
ax2.plot(time_axis, original, 'b-', label='Anomalous Time Series', linewidth=1, alpha=0.6)
# Color background based on true anomaly labels
anomaly_regions = []
in_anomaly = False
start_idx = 0
for i, is_anomaly in enumerate(true_labels > 0.5):
if is_anomaly and not in_anomaly:
start_idx = i
in_anomaly = True
elif not is_anomaly and in_anomaly:
anomaly_regions.append((start_idx, i - 1))
in_anomaly = False
if in_anomaly:
anomaly_regions.append((start_idx, len(true_labels) - 1))
for start, end in anomaly_regions:
ax2.axvspan(start, end, alpha=0.3, color='red',
label='True Anomaly' if start == anomaly_regions[0][0] else "")
# Plot predicted anomaly probabilities
ax2_twin = ax2.twinx()
ax2_twin.plot(time_axis, anomaly_probs, 'r-', label='Anomaly Probability',
linewidth=2, alpha=0.8)
ax2_twin.axhline(y=0.5, color='orange', linestyle='--', alpha=0.7,
label='Threshold (0.5)')
ax2_twin.set_ylabel('Anomaly Probability', color='red')
ax2_twin.set_ylim(0, 1)
ax2.set_title('Anomaly Detection Results', fontsize=14, fontweight='bold')
ax2.set_xlabel('Time Steps')
ax2.set_ylabel('Time Series Value', color='blue')
# Combine legends
lines1, labels1 = ax2.get_legend_handles_labels()
lines2, labels2 = ax2_twin.get_legend_handles_labels()
ax2.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
ax2.grid(True, alpha=0.3)
# 3. Performance metrics visualization
ax3 = axes[2]
# Calculate reconstruction error for masked regions
if mask.sum() > 0:
recon_error = np.abs(original[mask] - reconstructed[mask])
ax3.bar(np.arange(len(recon_error)), recon_error,
alpha=0.7, color='orange', label='Reconstruction Error')
ax3.set_title('Reconstruction Error (Masked Regions Only)',
fontsize=14, fontweight='bold')
ax3.set_xlabel('Masked Time Step Index')
ax3.set_ylabel('Absolute Error')
ax3.legend()
ax3.grid(True, alpha=0.3)
else:
ax3.text(0.5, 0.5, 'No masked regions in this sample',
ha='center', va='center', transform=ax3.transAxes, fontsize=12)
ax3.set_title('Reconstruction Error', fontsize=14, fontweight='bold')
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.show()
elif original.ndim == 2:
_, num_features = original.shape
fig_height = 4 * num_features + 2
fig, axes = plt.subplots(num_features, 1, figsize=(16, fig_height))
plt.subplots_adjust(top=0.85, hspace=0.2, left=0.08, right=0.92, bottom=0.08)
anomaly_regions = []
in_anomaly = False
start_idx = 0
for i, is_anomaly in enumerate(true_labels > 0.5):
if is_anomaly and not in_anomaly:
start_idx = i
in_anomaly = True
elif not is_anomaly and in_anomaly:
anomaly_regions.append((start_idx, i - 1))
in_anomaly = False
if in_anomaly:
anomaly_regions.append((start_idx, len(true_labels) - 1))
for feature_idx in range(num_features):
ax = axes[feature_idx]
ax.plot(time_axis, original[:, feature_idx], 'b-',
linewidth=1, label=f'Anomalous Time Series', alpha=0.8)
ax.plot(time_axis, normal[:, feature_idx], 'g-',
linewidth=1, label='Normal Time Series', alpha=0.8)
y_min, y_max = ax.get_ylim()
shift = y_max - y_min
ax.set_ylim(y_min - shift, y_max)
for start, end in anomaly_regions:
if start == end:
ax.axvspan(start - 0.5, start + 0.5, alpha=0.3, color='grey',
label='True Anomaly Region' if start == anomaly_regions[0][
0] and feature_idx == 0 else "")
else:
ax.axvspan(start, end, alpha=0.3, color='grey',
label='True Anomaly Region' if start == anomaly_regions[0][
0] and feature_idx == 0 else "")
ax2 = ax.twinx()
ax2.plot(time_axis, anomaly_probs, 'r-', linewidth=1,
label='Anomaly Score', alpha=0.9)
ax2.set_ylim(0, 1.5)
ax2.set_ylabel('Anomaly Score', fontsize=12)
ax.set_ylabel(f'Value', fontsize=12)
if feature_idx == num_features - 1:
ax.set_xlabel('Time Steps', fontsize=12)
else:
ax.set_xticklabels([])
ax.set_title(f'Feature {feature_idx} - Time Series & Anomaly Score',
fontsize=16, pad=10)
ax.grid(True, alpha=0.3)
if feature_idx == 0:
lines1, labels1 = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines1 + lines2, labels1 + labels2,
loc='upper right', bbox_to_anchor=(0.98, 0.98), fontsize=14)
anomalies = []
isendo = attribute['is_endogenous']
edges = attribute['dag']
for idx, item in enumerate(attribute['attribute_list']):
for k, v in item['anomalies'].items():
anomalies.append((f"feature_{idx}_{k[2:]}", v))
anomalies_str = ', '.join([f"{k}: {v}" for k, v in anomalies])
wrap_width = 100
wrapped_anomalies = textwrap.fill(f"Anomalies: {anomalies_str}", width=wrap_width)
wrapped_edges = textwrap.fill(f"Edges: {str(edges)}", width=wrap_width)
title = f"Multivariate Time Series Visualization\n{isendo}_{wrapped_anomalies}\n{wrapped_edges}"
fig.suptitle(title, fontsize=22, y=0.95, ha='center', va='top')
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight', facecolor='white')
plt.show()
else:
raise ValueError("Unsupported original data shape: {}".format(original.shape))
def test_model(self, data_path: str, filename: str, num_samples: int = 5, save_dir: str = None,
max_test_data: int = 100):
"""Test the model on a dataset and visualize results."""
# Load test dataset
full_test_dataset = ChatTSTimeRCDPretrainDataset(data_path, filename, split="test", train_ratio=0)
print(f'Length of dataset: {len(full_test_dataset)}')
# Limit to max_test_data samples
if len(full_test_dataset) > max_test_data:
indices = torch.randperm(len(full_test_dataset))[:max_test_data].tolist()
test_dataset = torch.utils.data.Subset(full_test_dataset, indices)
print("random")
else:
test_dataset = full_test_dataset
# Create visualization loader for detailed visualization (one by one)
vis_loader = DataLoader(
test_dataset,
batch_size=1, # Process one sample at a time for visualization
shuffle=False,
collate_fn=collate_fn,
num_workers=0
)
# Visualize individual samples (one by one)
num_visualize = min(num_samples, len(test_dataset))
vis_iter = iter(vis_loader)
for i in range(num_visualize):
try:
vis_batch = next(vis_iter)
# Run inference for this single sample
vis_results = self.predict(vis_batch)
save_path = None
if save_dir:
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, f"sample_{i + 1}_results.png")
self.visualize_single_sample(vis_results, sample_idx=0, save_path=save_path)
except StopIteration:
break
def zero_shot(self, data):
"""Run zero-shot inference on the provided data."""
if len(data) <= self.win_size:
self.win_size = len(data)
test_loader = DataLoader(
dataset=TimeRCDDataset(data, window_size=self.win_size, stride=self.win_size, normalize=True),
batch_size=self.batch_size,
collate_fn=test_collate_fn,
num_workers=0,
shuffle=False,)
loop = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=True)
scores = []
logits = []
with torch.no_grad():
for i, batch in loop:
# Move data to device
time_series = batch['time_series'].to(self.device)
# print("Here is the time series shape: ", time_series.shape)
# print(f"Here are a sample of dataset after normalization: {time_series[:10, :]}")
batch_size, seq_len, num_features = time_series.shape
# 瀵规椂闂村簭鍒楁爣鍑嗗寲
attention_mask = batch['attention_mask'].to(self.device)
# print("Here is the attention mask shape: ", attention_mask.shape)
# print("Here is the attention mask: ", attention_mask)
# Get embeddings
local_embeddings = self.model(
time_series=time_series,
mask=attention_mask)
# Get anomaly predictions
anomaly_logits = self.model.anomaly_head(local_embeddings)
anomaly_logits = torch.mean(anomaly_logits, dim=-2) # (B, seq_len, 2)
anomaly_probs = F.softmax(anomaly_logits, dim=-1)[..., 1] # Probability of anomaly (B, seq_len)
scores.append(anomaly_probs.cpu().numpy())
logit = anomaly_logits[..., 1] - anomaly_logits[..., 0] # Anomaly logits (B, seq_len)
logits.append(logit.cpu().numpy())
return scores, logits
def evaluate(self, time_series, mask):
with torch.no_grad():
time_series = time_series.to(self.device)
mask = mask.to(self.device)
local_embeddings = self.model(time_series = time_series, mask = mask)
reconstructed = self.model.reconstruction_head(local_embeddings) # (B, seq_len, num_features, 1)
reconstructed = reconstructed.squeeze(-1)
mask_expand = mask.unsqueeze(-1).expand(-1, -1, reconstructed.shape[-1])
anomaly_probs = ((reconstructed - time_series) ** 2)[mask_expand]
return anomaly_probs, reconstructed
def zero_shot_reconstruct(self, data, visualize=True, data_index=None):
"""Run zero-shot inference on the provided data."""
if len(data) <= self.win_size:
self.win_size = len(data)
test_loader = DataLoader(
dataset=Dataset_UCR(data, window_size=self.win_size),
batch_size=self.batch_size,
# collate_fn=collate_fn,
num_workers=0,
shuffle=False, )
loop = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=True)
scores = []
with torch.no_grad():
for i, (x, mask) in loop:
# Move data to device
print("Here is the batch type: ", type(x))
print("Shape: ", np.array(x).shape)
time_series = torch.tensor(x, dtype=torch.float32).to(self.device) # (B, seq_len, num_features)
mask_tensor = torch.tensor(mask, dtype=torch.bool).to(self.device)
# print("Here is the time series shape: ", time_series.shape)
# 瀵规椂闂村簭鍒楁爣鍑嗗寲
# attention_mask = batch['attention_mask'].to(self.device)
score, reconstructed = self.evaluate(time_series, mask_tensor)
scores.append(score)
# Visualize the first batch if requested
if visualize:
self.visualize_reconstruction(original=time_series[0].cpu().numpy(),
reconstructed=reconstructed.cpu().numpy(),
mask=mask_tensor[0].cpu().numpy(),
scores=score.cpu().numpy(),
save_path=f"/home/lihaoyang/Huawei/TSB-AD/Synthetic/random_mask_anomaly_head_Time_RCD_Reconstruction_5000/plot/",
index=data_index)
return scores
def visualize_reconstruction(self, original, reconstructed, mask, scores, index, save_path=None):
"""Visualize reconstruction results for a single sample."""
import matplotlib.pyplot as plt
seq_len = len(original)
time_axis = np.arange(seq_len)
# Squeeze singleton dimensions
original = original.squeeze()
reconstructed = reconstructed.squeeze(0).squeeze(-1)
scores = scores.squeeze()
fig, axes = plt.subplots(2, 1, figsize=(15, 10))
# 1. Reconstruction plot
ax1 = axes[0]
ax1.plot(time_axis, original, 'b-', label='Original', linewidth=2, alpha=0.8)
ax1.plot(time_axis, reconstructed, 'r--', label='Reconstructed', linewidth=2, alpha=0.8)
# Highlight masked regions
mask_regions = []
in_mask = False
start_idx = 0
for i, is_masked in enumerate(mask):
if is_masked and not in_mask:
start_idx = i
in_mask = True
elif not is_masked and in_mask:
mask_regions.append((start_idx, i - 1))
in_mask = False
if in_mask:
mask_regions.append((start_idx, len(mask) - 1))
for start, end in mask_regions:
ax1.axvspan(start, end, alpha=0.2, color='red',
label='Masked Region' if start == mask_regions[0][0] else "")
ax1.set_title('Time Series Reconstruction', fontsize=14, fontweight='bold')
ax1.set_xlabel('Time Steps')
ax1.set_ylabel('Value')
ax1.legend()
ax1.grid(True, alpha=0.3)
# 2. Reconstruction error plot
ax2 = axes[1]
recon_error = np.abs(original - reconstructed)
ax2.plot(time_axis, recon_error, 'g-', label='Reconstruction Error', linewidth=2, alpha=0.8)
# Plot scores if available (mapped to time steps)
if len(scores) == mask.sum():
# Scores are only for masked points, map back to full sequence
full_scores = np.zeros(seq_len)
full_scores[mask] = scores
ax2_twin = ax2.twinx()
ax2_twin.plot(time_axis, full_scores, 'orange', label='Anomaly Scores', linewidth=1.5, alpha=0.7)
ax2_twin.set_ylabel('Anomaly Score', color='orange')
ax2_twin.legend(loc='upper right')
ax2.set_title('Reconstruction Error', fontsize=14, fontweight='bold')
ax2.set_xlabel('Time Steps')
ax2.set_ylabel('Absolute Error')
ax2.legend()
ax2.grid(True, alpha=0.3)
plt.tight_layout()
if save_path:
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
save_path = os.path.join(save_path, f"reconstruction_sample_{index}_results.png")
plt.savefig(save_path, dpi=300, bbox_inches='tight')
print("Visualization saved to: ", save_path)
# plt.show()
class Dataset_UCR(Dataset):
def __init__(self, data, window_size: int = 1000):
super().__init__()
self.data = data.reshape(-1, 1) if len(data.shape) == 1 else data
self.window_size = window_size
self._load_data()
self._process_windows()
def _load_data(self):
# train_data = np.load(train_path, allow_pickle=True) # (seq_len, num_features)
# test_data = np.load(test_path, allow_pickle=True) # (seq_len, num_features)
# test_labels = np.load(label_path, allow_pickle=True) # (seq_len, )
train_data = self.data
scaler = StandardScaler()
train_data = scaler.fit_transform(train_data)
self.raw_test = scaler.transform(self.data)
def _process_windows(self):
if len(self.raw_test) <= self.window_size:
self.test = np.expand_dims(self.raw_test, axis=0)
# self.test_labels = np.expand_dims(self.raw_labels, axis=0)
self.mask = np.expand_dims(np.ones(len(self.raw_test), dtype=bool), axis=0)
else:
self.raw_masks = np.ones(len(self.raw_test), dtype=bool)
padding = self.window_size - (len(self.raw_test) % self.window_size)
if padding < self.window_size:
self.raw_test = np.pad(self.raw_test, ((0, padding), (0, 0)), mode='constant')
# self.raw_labels = np.pad(self.raw_labels, (0, padding), mode='constant')
self.raw_masks = np.pad(self.raw_masks, (0, padding), mode='constant')
self.test = self.raw_test.reshape(-1, self.window_size, self.raw_test.shape[1])
# self.test_labels = self.raw_labels.reshape(-1, self.window_size)
self.mask = self.raw_masks.reshape(-1, self.window_size)
assert self.test.shape[0] == self.test_labels.shape[0] == self.mask.shape[0], "Inconsistent window sizes"
def __len__(self):
return len(self.test)
def __getitem__(self, index):
return np.float32(self.test[index]), self.mask[index] |