File size: 25,743 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import tqdm
import os
import textwrap
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from torch.utils.data import DataLoader
import warnings
from torch.utils.data import Dataset
from sklearn.preprocessing import StandardScaler

warnings.filterwarnings("ignore")

from .time_rcd.dataset import ChatTSTimeRCDPretrainDataset
from .time_rcd.TimeRCD_pretrain_multi import TimeSeriesPretrainModel, create_random_mask, collate_fn, test_collate_fn
from .time_rcd.time_rcd_config import TimeRCDConfig, default_config
from utils.dataset import TimeRCDDataset

class TimeRCDPretrainTester:
    """Tester class for visualizing pretrained model results."""

    def __init__(self, checkpoint_path: str, config: TimeRCDConfig):
        self.config = config
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.win_size = config.win_size
        self.batch_size = config.batch_size
        # Load model
        self.model = TimeSeriesPretrainModel(config).to(self.device)
        self.load_checkpoint(checkpoint_path)
        self.model.eval()

        print(f"Model loaded on device: {self.device}")

    def load_checkpoint(self, checkpoint_path: str):
        """Load model from checkpoint."""
        if not os.path.exists(checkpoint_path):
            raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")

        checkpoint = torch.load(checkpoint_path, map_location=self.device)

        # Handle different checkpoint formats
        if 'model_state_dict' in checkpoint:
            state_dict = checkpoint['model_state_dict']
        else:
            state_dict = checkpoint

        # Remove 'module.' prefix if present (from DDP training)
        new_state_dict = {}
        for key, value in state_dict.items():
            if key.startswith('module.'):
                new_key = key[7:]  # Remove 'module.' prefix
            else:
                new_key = key
            new_state_dict[new_key] = value

        self.model.load_state_dict(new_state_dict)
        print(f"Successfully loaded checkpoint from {checkpoint_path}")

    def predict(self, batch):
        """Run inference on a batch."""
        with torch.no_grad():
            # Move data to device
            time_series = batch['time_series'].to(self.device)
            normal_time_series = batch['normal_time_series'].to(self.device)
            masked_time_series = batch['masked_time_series'].to(self.device)
            attribute = batch['attribute']
            batch_size, seq_len, num_features = time_series.shape

            # 瀵规椂闂村簭鍒楁爣鍑嗗寲
            time_series = (time_series - time_series.mean(dim=1, keepdim=True)) / (time_series.std(dim=1, keepdim=True) + 1e-8)
            masked_time_series = (masked_time_series - masked_time_series.mean(dim=1, keepdim=True)) / (masked_time_series.std(dim=1, keepdim=True) + 1e-8)

            mask = batch['mask'].to(self.device)
            labels = batch['labels'].to(self.device)
            attention_mask = batch['attention_mask'].to(self.device)

            # Get embeddings
            local_embeddings = self.model(
                time_series=time_series,
                mask=attention_mask)

            # Get reconstruction
            reconstructed = self.model.reconstruction_head(local_embeddings)
            reconstructed = reconstructed.view(batch_size, seq_len, num_features)  # (B, seq_len, num_features)

            # Get anomaly predictions
            anomaly_logits = self.model.anomaly_head(local_embeddings)
            anomaly_logits = torch.mean(anomaly_logits, dim=-2)  # (B, seq_len, 2)
            anomaly_probs = F.softmax(anomaly_logits, dim=-1)[..., 1]  # Probability of anomaly (B, seq_len)

            return {
                'original': time_series.cpu(),
                'normal': normal_time_series.cpu(),
                'masked': masked_time_series.cpu(),
                'reconstructed': reconstructed.cpu(),
                'mask': mask.cpu(),
                'anomaly_probs': anomaly_probs.cpu(),
                'true_labels': labels.cpu(),
                'attention_mask': attention_mask.cpu(),
                'attribute': attribute
            }

    def visualize_single_sample(self, results, sample_idx=0, save_path=None):
        """Visualize results for a single time series sample."""
        # Extract data for the specified sample
        original = results['original'][sample_idx].squeeze(-1).numpy()  # (seq_len, num_features) / (seq_len,)
        normal = results['normal'][sample_idx].squeeze(-1).numpy()
        masked = results['masked'][sample_idx].squeeze(-1).numpy()
        reconstructed = results['reconstructed'][sample_idx].squeeze(-1).numpy()
        mask = results['mask'][sample_idx].numpy().astype(bool)
        anomaly_probs = results['anomaly_probs'][sample_idx].numpy()  # (seq_len,)
        true_labels = results['true_labels'][sample_idx].numpy()  # (seq_len,)
        attention_mask = results['attention_mask'][sample_idx].numpy().astype(bool)
        attribute = results['attribute'][sample_idx]

        # Only consider valid sequence length
        valid_length = attention_mask.sum()
        original = original[:valid_length]
        normal = normal[:valid_length]
        masked = masked[:valid_length]
        reconstructed = reconstructed[:valid_length]
        mask = mask[:valid_length]
        anomaly_probs = anomaly_probs[:valid_length]
        true_labels = true_labels[:valid_length]

        # Create time axis
        time_axis = np.arange(len(original))

        assert original.ndim == normal.ndim == reconstructed.ndim == masked.ndim, "Original, normal, reconstructed, and masked time series must have the same dimensions."
        if original.ndim == 1:
            # Create subplots
            fig, axes = plt.subplots(3, 1, figsize=(15, 12))

            # 1. Reconstruction visualization
            ax1 = axes[0]
            ax1.plot(time_axis, original, 'b-', label='Original', linewidth=2, alpha=0.8)
            ax1.plot(time_axis, masked, 'g--', label='Masked Input', linewidth=1.5, alpha=0.7)
            ax1.plot(time_axis[mask], reconstructed[mask], 'ro',
                     label='Reconstructed', markersize=4, alpha=0.8)

            # Highlight masked regions
            mask_regions = []
            in_mask = False
            start_idx = 0

            for i, is_masked in enumerate(mask):
                if is_masked and not in_mask:
                    start_idx = i
                    in_mask = True
                elif not is_masked and in_mask:
                    mask_regions.append((start_idx, i - 1))
                    in_mask = False

            if in_mask:  # Handle case where mask continues to the end
                mask_regions.append((start_idx, len(mask) - 1))

            for start, end in mask_regions:
                ax1.axvspan(start, end, alpha=0.2, color='red',
                            label='Masked Region' if start == mask_regions[0][0] else "")

            ax1.set_title('Time Series Reconstruction', fontsize=14, fontweight='bold')
            ax1.set_xlabel('Time Steps')
            ax1.set_ylabel('Value')
            ax1.legend()
            ax1.grid(True, alpha=0.3)

            # 2. Anomaly detection visualization
            ax2 = axes[1]
            ax2.plot(time_axis, normal, 'g-', label='Normal Time Series', linewidth=1, alpha=0.6)
            ax2.plot(time_axis, original, 'b-', label='Anomalous Time Series', linewidth=1, alpha=0.6)

            # Color background based on true anomaly labels
            anomaly_regions = []
            in_anomaly = False
            start_idx = 0

            for i, is_anomaly in enumerate(true_labels > 0.5):
                if is_anomaly and not in_anomaly:
                    start_idx = i
                    in_anomaly = True
                elif not is_anomaly and in_anomaly:
                    anomaly_regions.append((start_idx, i - 1))
                    in_anomaly = False

            if in_anomaly:
                anomaly_regions.append((start_idx, len(true_labels) - 1))

            for start, end in anomaly_regions:
                ax2.axvspan(start, end, alpha=0.3, color='red',
                            label='True Anomaly' if start == anomaly_regions[0][0] else "")

            # Plot predicted anomaly probabilities
            ax2_twin = ax2.twinx()
            ax2_twin.plot(time_axis, anomaly_probs, 'r-', label='Anomaly Probability',
                          linewidth=2, alpha=0.8)
            ax2_twin.axhline(y=0.5, color='orange', linestyle='--', alpha=0.7,
                             label='Threshold (0.5)')
            ax2_twin.set_ylabel('Anomaly Probability', color='red')
            ax2_twin.set_ylim(0, 1)

            ax2.set_title('Anomaly Detection Results', fontsize=14, fontweight='bold')
            ax2.set_xlabel('Time Steps')
            ax2.set_ylabel('Time Series Value', color='blue')

            # Combine legends
            lines1, labels1 = ax2.get_legend_handles_labels()
            lines2, labels2 = ax2_twin.get_legend_handles_labels()
            ax2.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
            ax2.grid(True, alpha=0.3)

            # 3. Performance metrics visualization
            ax3 = axes[2]

            # Calculate reconstruction error for masked regions
            if mask.sum() > 0:
                recon_error = np.abs(original[mask] - reconstructed[mask])
                ax3.bar(np.arange(len(recon_error)), recon_error,
                        alpha=0.7, color='orange', label='Reconstruction Error')
                ax3.set_title('Reconstruction Error (Masked Regions Only)',
                              fontsize=14, fontweight='bold')
                ax3.set_xlabel('Masked Time Step Index')
                ax3.set_ylabel('Absolute Error')
                ax3.legend()
                ax3.grid(True, alpha=0.3)
            else:
                ax3.text(0.5, 0.5, 'No masked regions in this sample',
                         ha='center', va='center', transform=ax3.transAxes, fontsize=12)
                ax3.set_title('Reconstruction Error', fontsize=14, fontweight='bold')

            plt.tight_layout()

            if save_path:
                plt.savefig(save_path, dpi=300, bbox_inches='tight')

            plt.show()

        elif original.ndim == 2:
            _, num_features = original.shape

            fig_height = 4 * num_features + 2
            fig, axes = plt.subplots(num_features, 1, figsize=(16, fig_height))
            plt.subplots_adjust(top=0.85, hspace=0.2, left=0.08, right=0.92, bottom=0.08)

            anomaly_regions = []
            in_anomaly = False
            start_idx = 0
            for i, is_anomaly in enumerate(true_labels > 0.5):
                if is_anomaly and not in_anomaly:
                    start_idx = i
                    in_anomaly = True
                elif not is_anomaly and in_anomaly:
                    anomaly_regions.append((start_idx, i - 1))
                    in_anomaly = False
            if in_anomaly:
                anomaly_regions.append((start_idx, len(true_labels) - 1))

            for feature_idx in range(num_features):
                ax = axes[feature_idx]
                ax.plot(time_axis, original[:, feature_idx], 'b-',
                        linewidth=1, label=f'Anomalous Time Series', alpha=0.8)
                ax.plot(time_axis, normal[:, feature_idx], 'g-',
                        linewidth=1, label='Normal Time Series', alpha=0.8)
                y_min, y_max = ax.get_ylim()
                shift = y_max - y_min
                ax.set_ylim(y_min - shift, y_max)

                for start, end in anomaly_regions:
                    if start == end:
                        ax.axvspan(start - 0.5, start + 0.5, alpha=0.3, color='grey',
                                   label='True Anomaly Region' if start == anomaly_regions[0][
                                       0] and feature_idx == 0 else "")
                    else:
                        ax.axvspan(start, end, alpha=0.3, color='grey',
                                   label='True Anomaly Region' if start == anomaly_regions[0][
                                       0] and feature_idx == 0 else "")

                ax2 = ax.twinx()
                ax2.plot(time_axis, anomaly_probs, 'r-', linewidth=1,
                         label='Anomaly Score', alpha=0.9)
                ax2.set_ylim(0, 1.5)
                ax2.set_ylabel('Anomaly Score', fontsize=12)
                ax.set_ylabel(f'Value', fontsize=12)
                if feature_idx == num_features - 1:
                    ax.set_xlabel('Time Steps', fontsize=12)
                else:
                    ax.set_xticklabels([])

                ax.set_title(f'Feature {feature_idx} - Time Series & Anomaly Score',
                             fontsize=16, pad=10)
                ax.grid(True, alpha=0.3)

                if feature_idx == 0:
                    lines1, labels1 = ax.get_legend_handles_labels()
                    lines2, labels2 = ax2.get_legend_handles_labels()
                    ax.legend(lines1 + lines2, labels1 + labels2,
                              loc='upper right', bbox_to_anchor=(0.98, 0.98), fontsize=14)

            anomalies = []
            isendo = attribute['is_endogenous']
            edges = attribute['dag']
            for idx, item in enumerate(attribute['attribute_list']):
                for k, v in item['anomalies'].items():
                    anomalies.append((f"feature_{idx}_{k[2:]}", v))
            anomalies_str = ', '.join([f"{k}: {v}" for k, v in anomalies])
            wrap_width = 100
            wrapped_anomalies = textwrap.fill(f"Anomalies: {anomalies_str}", width=wrap_width)
            wrapped_edges = textwrap.fill(f"Edges: {str(edges)}", width=wrap_width)
            title = f"Multivariate Time Series Visualization\n{isendo}_{wrapped_anomalies}\n{wrapped_edges}"
            fig.suptitle(title, fontsize=22, y=0.95, ha='center', va='top')

            if save_path:
                plt.savefig(save_path, dpi=300, bbox_inches='tight', facecolor='white')
            plt.show()


        else:
            raise ValueError("Unsupported original data shape: {}".format(original.shape))

    def test_model(self, data_path: str, filename: str, num_samples: int = 5, save_dir: str = None,
                   max_test_data: int = 100):
        """Test the model on a dataset and visualize results."""
        # Load test dataset
        full_test_dataset = ChatTSTimeRCDPretrainDataset(data_path, filename, split="test", train_ratio=0)
        print(f'Length of dataset: {len(full_test_dataset)}')

        # Limit to max_test_data samples
        if len(full_test_dataset) > max_test_data:
            indices = torch.randperm(len(full_test_dataset))[:max_test_data].tolist()
            test_dataset = torch.utils.data.Subset(full_test_dataset, indices)
            print("random")
        else:
            test_dataset = full_test_dataset

        # Create visualization loader for detailed visualization (one by one)
        vis_loader = DataLoader(
            test_dataset,
            batch_size=1,  # Process one sample at a time for visualization
            shuffle=False,
            collate_fn=collate_fn,
            num_workers=0
        )

        # Visualize individual samples (one by one)
        num_visualize = min(num_samples, len(test_dataset))

        vis_iter = iter(vis_loader)

        for i in range(num_visualize):
            try:
                vis_batch = next(vis_iter)

                # Run inference for this single sample
                vis_results = self.predict(vis_batch)

                save_path = None
                if save_dir:
                    os.makedirs(save_dir, exist_ok=True)
                    save_path = os.path.join(save_dir, f"sample_{i + 1}_results.png")

                self.visualize_single_sample(vis_results, sample_idx=0, save_path=save_path)

            except StopIteration:
                break

    def zero_shot(self, data):
        """Run zero-shot inference on the provided data."""
        if len(data)  <= self.win_size:
           self.win_size = len(data)

        test_loader = DataLoader(
            dataset=TimeRCDDataset(data, window_size=self.win_size, stride=self.win_size, normalize=True),
            batch_size=self.batch_size,
            collate_fn=test_collate_fn,
            num_workers=0,
            shuffle=False,)

        loop = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=True)
        scores = []
        logits = []
        with torch.no_grad():
            for i, batch in loop:
                # Move data to device
                time_series = batch['time_series'].to(self.device)
                # print("Here is the time series shape: ", time_series.shape)
                # print(f"Here are a sample of dataset after normalization: {time_series[:10, :]}")
                batch_size, seq_len, num_features = time_series.shape
                # 瀵规椂闂村簭鍒楁爣鍑嗗寲
                attention_mask = batch['attention_mask'].to(self.device)
                # print("Here is the attention mask shape: ", attention_mask.shape)
                # print("Here is the attention mask: ", attention_mask)
                # Get embeddings
                local_embeddings = self.model(
                    time_series=time_series,
                    mask=attention_mask)

                # Get anomaly predictions
                anomaly_logits = self.model.anomaly_head(local_embeddings)
                anomaly_logits = torch.mean(anomaly_logits, dim=-2)  # (B, seq_len, 2)
                anomaly_probs = F.softmax(anomaly_logits, dim=-1)[..., 1]  # Probability of anomaly (B, seq_len)
                scores.append(anomaly_probs.cpu().numpy())
                logit = anomaly_logits[..., 1] - anomaly_logits[..., 0]  # Anomaly logits (B, seq_len)
                logits.append(logit.cpu().numpy())
        return scores, logits

    def evaluate(self, time_series, mask):
        with torch.no_grad():
            time_series = time_series.to(self.device)
            mask = mask.to(self.device)
            local_embeddings = self.model(time_series = time_series, mask = mask)

            reconstructed = self.model.reconstruction_head(local_embeddings)  # (B, seq_len, num_features, 1)
            reconstructed = reconstructed.squeeze(-1)

            mask_expand = mask.unsqueeze(-1).expand(-1, -1, reconstructed.shape[-1])

            anomaly_probs = ((reconstructed - time_series) ** 2)[mask_expand]
        return anomaly_probs, reconstructed


    def zero_shot_reconstruct(self, data, visualize=True, data_index=None):
        """Run zero-shot inference on the provided data."""
        if len(data) <= self.win_size:
            self.win_size = len(data)

        test_loader = DataLoader(
            dataset=Dataset_UCR(data, window_size=self.win_size),
            batch_size=self.batch_size,
            # collate_fn=collate_fn,
            num_workers=0,
            shuffle=False, )

        loop = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=True)
        scores = []
        with torch.no_grad():
            for i, (x, mask) in loop:
                # Move data to device
                print("Here is the batch type: ", type(x))
                print("Shape: ", np.array(x).shape)
                time_series = torch.tensor(x, dtype=torch.float32).to(self.device)  # (B, seq_len, num_features)
                mask_tensor = torch.tensor(mask, dtype=torch.bool).to(self.device)
                # print("Here is the time series shape: ", time_series.shape)
                # 瀵规椂闂村簭鍒楁爣鍑嗗寲
                # attention_mask = batch['attention_mask'].to(self.device)
                score, reconstructed = self.evaluate(time_series, mask_tensor)

                scores.append(score)

                # Visualize the first batch if requested
                if visualize:
                    self.visualize_reconstruction(original=time_series[0].cpu().numpy(),
                                                  reconstructed=reconstructed.cpu().numpy(),
                                                  mask=mask_tensor[0].cpu().numpy(),
                                                  scores=score.cpu().numpy(),
                                                  save_path=f"/home/lihaoyang/Huawei/TSB-AD/Synthetic/random_mask_anomaly_head_Time_RCD_Reconstruction_5000/plot/",
                                                  index=data_index)

        return scores

    def visualize_reconstruction(self, original, reconstructed, mask, scores, index, save_path=None):
        """Visualize reconstruction results for a single sample."""
        import matplotlib.pyplot as plt

        seq_len = len(original)
        time_axis = np.arange(seq_len)

        # Squeeze singleton dimensions
        original = original.squeeze()
        reconstructed = reconstructed.squeeze(0).squeeze(-1)
        scores = scores.squeeze()

        fig, axes = plt.subplots(2, 1, figsize=(15, 10))

        # 1. Reconstruction plot
        ax1 = axes[0]
        ax1.plot(time_axis, original, 'b-', label='Original', linewidth=2, alpha=0.8)
        ax1.plot(time_axis, reconstructed, 'r--', label='Reconstructed', linewidth=2, alpha=0.8)

        # Highlight masked regions
        mask_regions = []
        in_mask = False
        start_idx = 0
        for i, is_masked in enumerate(mask):
            if is_masked and not in_mask:
                start_idx = i
                in_mask = True
            elif not is_masked and in_mask:
                mask_regions.append((start_idx, i - 1))
                in_mask = False
        if in_mask:
            mask_regions.append((start_idx, len(mask) - 1))

        for start, end in mask_regions:
            ax1.axvspan(start, end, alpha=0.2, color='red',
                        label='Masked Region' if start == mask_regions[0][0] else "")

        ax1.set_title('Time Series Reconstruction', fontsize=14, fontweight='bold')
        ax1.set_xlabel('Time Steps')
        ax1.set_ylabel('Value')
        ax1.legend()
        ax1.grid(True, alpha=0.3)

        # 2. Reconstruction error plot
        ax2 = axes[1]
        recon_error = np.abs(original - reconstructed)
        ax2.plot(time_axis, recon_error, 'g-', label='Reconstruction Error', linewidth=2, alpha=0.8)

        # Plot scores if available (mapped to time steps)
        if len(scores) == mask.sum():
            # Scores are only for masked points, map back to full sequence
            full_scores = np.zeros(seq_len)
            full_scores[mask] = scores
            ax2_twin = ax2.twinx()
            ax2_twin.plot(time_axis, full_scores, 'orange', label='Anomaly Scores', linewidth=1.5, alpha=0.7)
            ax2_twin.set_ylabel('Anomaly Score', color='orange')
            ax2_twin.legend(loc='upper right')

        ax2.set_title('Reconstruction Error', fontsize=14, fontweight='bold')
        ax2.set_xlabel('Time Steps')
        ax2.set_ylabel('Absolute Error')
        ax2.legend()
        ax2.grid(True, alpha=0.3)

        plt.tight_layout()

        if save_path:
            if not os.path.exists(save_path):
                os.makedirs(save_path, exist_ok=True)
            save_path = os.path.join(save_path, f"reconstruction_sample_{index}_results.png")
            plt.savefig(save_path, dpi=300, bbox_inches='tight')
            print("Visualization saved to: ", save_path)

        # plt.show()


class Dataset_UCR(Dataset):
    def __init__(self, data, window_size: int = 1000):
        super().__init__()
        self.data = data.reshape(-1, 1) if len(data.shape) == 1 else data
        self.window_size = window_size
        self._load_data()
        self._process_windows()
    
    def _load_data(self):
        # train_data = np.load(train_path, allow_pickle=True)  # (seq_len, num_features)
        # test_data = np.load(test_path, allow_pickle=True)  # (seq_len, num_features)
        # test_labels = np.load(label_path, allow_pickle=True)  # (seq_len, )
        train_data = self.data
        scaler = StandardScaler()
        train_data = scaler.fit_transform(train_data)
        self.raw_test = scaler.transform(self.data)

    def _process_windows(self):
        if len(self.raw_test) <= self.window_size:
            self.test = np.expand_dims(self.raw_test, axis=0)
            # self.test_labels = np.expand_dims(self.raw_labels, axis=0)
            self.mask = np.expand_dims(np.ones(len(self.raw_test), dtype=bool), axis=0)
        else:
            self.raw_masks = np.ones(len(self.raw_test), dtype=bool)
            padding = self.window_size - (len(self.raw_test) % self.window_size)
            if padding < self.window_size:
                self.raw_test = np.pad(self.raw_test, ((0, padding), (0, 0)), mode='constant')
                # self.raw_labels = np.pad(self.raw_labels, (0, padding), mode='constant')
                self.raw_masks = np.pad(self.raw_masks, (0, padding), mode='constant')
            self.test = self.raw_test.reshape(-1, self.window_size, self.raw_test.shape[1])
            # self.test_labels = self.raw_labels.reshape(-1, self.window_size)
            self.mask = self.raw_masks.reshape(-1, self.window_size)
            assert self.test.shape[0] == self.test_labels.shape[0] == self.mask.shape[0], "Inconsistent window sizes"

    def __len__(self):
        return len(self.test)

    def __getitem__(self, index):
        return np.float32(self.test[index]), self.mask[index]