File size: 10,816 Bytes
d03866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
This function is adapted from [TranAD] by [imperial-qore]
Original source: [https://github.com/imperial-qore/TranAD]
"""

from __future__ import division
from __future__ import print_function

import numpy as np
import math
import torch
import torch.nn.functional as F
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted
from torch import nn
from torch.nn import TransformerEncoder
from torch.nn import TransformerDecoder
from torch.utils.data import DataLoader
from sklearn.preprocessing import MinMaxScaler
import tqdm

from .base import BaseDetector
from ..utils.dataset import ReconstructDataset
from ..utils.torch_utility import EarlyStoppingTorch, get_gpu

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model).float() * (-math.log(10000.0) / d_model)
        )
        pe += torch.sin(position * div_term)
        pe += torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer("pe", pe)

    def forward(self, x, pos=0):
        x = x + self.pe[pos : pos + x.size(0), :]
        return self.dropout(x)

class TransformerEncoderLayer(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=16, dropout=0):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = nn.LeakyReLU(True)

    def forward(self, src, *args, **kwargs):
        src2 = self.self_attn(src, src, src)[0]
        src = src + self.dropout1(src2)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        return src

class TransformerDecoderLayer(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=16, dropout=0):
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = nn.LeakyReLU(True)

    def forward(self, tgt, memory, *args, **kwargs):
        tgt2 = self.self_attn(tgt, tgt, tgt)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt2 = self.multihead_attn(tgt, memory, memory)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt

class TranADModel(nn.Module):
    def __init__(self, batch_size, feats, win_size):
        super(TranADModel, self).__init__()
        self.name = "TranAD"
        self.batch = batch_size
        self.n_feats = feats
        self.n_window = win_size
        self.n = self.n_feats * self.n_window
        self.pos_encoder = PositionalEncoding(2 * feats, 0.1, self.n_window)
        encoder_layers = TransformerEncoderLayer(
            d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1
        )
        self.transformer_encoder = TransformerEncoder(encoder_layers, 1)
        decoder_layers1 = TransformerDecoderLayer(
            d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1
        )
        self.transformer_decoder1 = TransformerDecoder(decoder_layers1, 1)
        decoder_layers2 = TransformerDecoderLayer(
            d_model=2 * feats, nhead=feats, dim_feedforward=16, dropout=0.1
        )
        self.transformer_decoder2 = TransformerDecoder(decoder_layers2, 1)
        self.fcn = nn.Sequential(nn.Linear(2 * feats, feats), nn.Sigmoid())

    def encode(self, src, c, tgt):
        src = torch.cat((src, c), dim=2)
        src = src * math.sqrt(self.n_feats)
        src = self.pos_encoder(src)
        memory = self.transformer_encoder(src)
        tgt = tgt.repeat(1, 1, 2)
        return tgt, memory

    def forward(self, src, tgt):
        # Phase 1 - Without anomaly scores
        c = torch.zeros_like(src)
        x1 = self.fcn(self.transformer_decoder1(*self.encode(src, c, tgt)))
        # Phase 2 - With anomaly scores
        c = (x1 - src) ** 2
        x2 = self.fcn(self.transformer_decoder2(*self.encode(src, c, tgt)))
        return x1, x2


class TranAD(BaseDetector):
    def __init__(self,
                 win_size = 100,
                 feats = 1,
                 batch_size = 128,
                 epochs = 50,
                 patience = 3,
                 lr = 1e-4,
                 validation_size=0.2
                 ):
        super().__init__()

        self.__anomaly_score = None

        self.cuda = True
        self.device = get_gpu(self.cuda)

        self.win_size = win_size
        self.batch_size = batch_size
        self.epochs = epochs
        self.feats = feats
        self.validation_size = validation_size

        self.model = TranADModel(batch_size=self.batch_size, feats=self.feats, win_size=self.win_size).to(self.device)
        self.optimizer = torch.optim.AdamW(
            self.model.parameters(), lr=lr, weight_decay=1e-5
        )
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, 5, 0.9)
        self.criterion = nn.MSELoss()

        self.early_stopping = EarlyStoppingTorch(None, patience=patience)

    def fit(self, data):
        tsTrain = data[:int((1-self.validation_size)*len(data))]
        tsValid = data[int((1-self.validation_size)*len(data)):]

        train_loader = DataLoader(
            dataset=ReconstructDataset(tsTrain, window_size=self.win_size),
            batch_size=self.batch_size,
            shuffle=True
        )
        
        valid_loader = DataLoader(
            dataset=ReconstructDataset(tsValid, window_size=self.win_size),
            batch_size=self.batch_size,
            shuffle=False
        )
        
        for epoch in range(1, self.epochs + 1):
            self.model.train(mode=True)
            avg_loss = 0
            loop = tqdm.tqdm(
                enumerate(train_loader), total=len(train_loader), leave=True
            )
            for idx, (x, _) in loop:                
                if torch.isnan(x).any() or torch.isinf(x).any():
                    print("Input data contains nan or inf")
                    x = torch.nan_to_num(x)

                x = x.to(self.device)
                bs = x.shape[0]
                x = x.permute(1, 0, 2)
                elem = x[-1, :, :].view(1, bs, self.feats)

                self.optimizer.zero_grad()
                z = self.model(x, elem)
                loss = (1 / epoch) * self.criterion(z[0], elem) + (1 - 1 / epoch) * self.criterion(z[1], elem)
                loss.backward(retain_graph=True)

                self.optimizer.step()
                avg_loss += loss.cpu().item()
                loop.set_description(f"Training Epoch [{epoch}/{self.epochs}]")
                loop.set_postfix(loss=loss.item(), avg_loss=avg_loss / (idx + 1))

            if torch.isnan(loss):
                print(f"Loss is nan at epoch {epoch}")
                break

            if len(valid_loader) > 0:
                self.model.eval()
                avg_loss_val = 0
                loop = tqdm.tqdm(
                    enumerate(valid_loader), total=len(valid_loader), leave=True
                )
                with torch.no_grad():
                    for idx, (x, _) in loop:      

                        if torch.isnan(x).any() or torch.isinf(x).any():
                            print("Input data contains nan or inf")
                            x = torch.nan_to_num(x)

                        x = x.to(self.device)
                        # x = x.unsqueeze(-1)
                        bs = x.shape[0]
                        x = x.permute(1, 0, 2)
                        elem = x[-1, :, :].view(1, bs, self.feats)

                        self.optimizer.zero_grad()
                        z = self.model(x, elem)
                        loss = (1 / epoch) * self.criterion(z[0], elem) + (
                            1 - 1 / epoch
                        ) * self.criterion(z[1], elem)

                        avg_loss_val += loss.cpu().item()
                        loop.set_description(f"Validation Epoch [{epoch}/{self.epochs}]")
                        loop.set_postfix(loss=loss.item(), avg_loss_val=avg_loss_val / (idx + 1))

            self.scheduler.step()
            if len(valid_loader) > 0:
                avg_loss = avg_loss_val / len(valid_loader)
            else:
                avg_loss = avg_loss / len(train_loader)
            self.early_stopping(avg_loss, self.model)
            if self.early_stopping.early_stop:
                print("   Early stopping<<<")
                break

    def decision_function(self, data):
        test_loader = DataLoader(
            dataset=ReconstructDataset(data, window_size=self.win_size),
            batch_size=self.batch_size,
            shuffle=False
        )

        self.model.eval()
        scores = []
        loop = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=True)
        with torch.no_grad():
            for idx, (x, _) in loop:
                x = x.to(self.device)
                bs = x.shape[0]
                x = x.permute(1, 0, 2)
                elem = x[-1, :, :].view(1, bs, self.feats)
                # breakpoint()
                _, z = self.model(x, elem)

                loss = torch.mean(F.mse_loss(z, elem, reduction="none")[0], axis=-1)
                scores.append(loss.cpu())

        scores = torch.cat(scores, dim=0)
        scores = scores.numpy()

        self.__anomaly_score = scores

        if self.__anomaly_score.shape[0] < len(data):
            self.__anomaly_score = np.array([self.__anomaly_score[0]]*math.ceil((self.win_size-1)/2) + 
                        list(self.__anomaly_score) + [self.__anomaly_score[-1]]*((self.win_size-1)//2))
        
        return self.__anomaly_score

    def anomaly_score(self) -> np.ndarray:
        return self.__anomaly_score

    def param_statistic(self, save_file):
        pass