Spaces:
Sleeping
Sleeping
File size: 22,213 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
from __future__ import division
from __future__ import print_function
import abc
import warnings
from collections import defaultdict
from inspect import signature
import os
import numpy as np
from numpy import percentile
from scipy.special import erf
from scipy.stats import binom
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.utils import deprecated
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_is_fitted
from sklearn.metrics import precision_score
from sklearn.utils import column_or_1d
def precision_n_scores(y, y_pred, n=None):
"""Utility function to calculate precision @ rank n."""
# turn raw prediction decision scores into binary labels
y_pred = get_label_n(y, y_pred, n)
# enforce formats of y and labels_
y = column_or_1d(y)
y_pred = column_or_1d(y_pred)
return precision_score(y, y_pred)
def get_label_n(y, y_pred, n=None):
"""Function to turn raw outlier scores into binary labels by assign 1
to top n outlier scores."""
if n is not None:
threshold = np.percentile(y_pred, 100 * (1 - n / len(y_pred)))
y_pred_binary = (y_pred > threshold).astype('int')
else:
# if n is not defined, use the number of outliers in ground truth
n = np.sum(y)
threshold = np.percentile(y_pred, 100 * (1 - n / len(y_pred)))
y_pred_binary = (y_pred > threshold).astype('int')
return y_pred_binary
def _pprint(params, offset=0, printer=repr):
"""Pretty print the dictionary 'params'"""
# Do a multi-line justified repr:
options = np.get_printoptions()
np.set_printoptions(precision=5, threshold=64, edgeitems=2)
params_list = list()
this_line_length = offset
line_sep = ',\n' + (1 + offset // 2) * ' '
for i, (k, v) in enumerate(sorted(params.items())):
if type(v) is float:
# use str for representing floating point numbers
this_repr = '%s=%s' % (k, str(v))
else:
# use repr of the rest
this_repr = '%s=%s' % (k, printer(v))
params_list.append(this_repr)
this_line_length += len(this_repr)
lines = [line_sep.join(params_list)]
# reset numpy print options
np.set_printoptions(**options)
return '\n'.join(lines)
class BaseDetector(metaclass=abc.ABCMeta):
"""Abstract class for all outlier detection algorithms.
Parameters
----------
contamination : float in (0., 0.5), optional (default=0.1)
The amount of contamination of the data set,
i.e. the proportion of outliers in the data set. Used when fitting to
define the threshold on the decision function.
Attributes
----------
decision_scores_ : numpy array of shape (n_samples,)
The outlier scores of the training data.
The higher, the more abnormal. Outliers tend to have higher
scores. This value is available once the detector is fitted.
threshold_ : float
The threshold is based on ``contamination``. It is the
``n_samples * contamination`` most abnormal samples in
``decision_scores_``. The threshold is calculated for generating
binary outlier labels.
labels_ : int, either 0 or 1
The binary labels of the training data. 0 stands for inliers
and 1 for outliers/anomalies. It is generated by applying
``threshold_`` on ``decision_scores_``.
"""
@abc.abstractmethod
def __init__(self, contamination=0.1):
if (isinstance(contamination, (float, int))):
if not (0. < contamination <= 0.5):
raise ValueError("contamination must be in (0, 0.5], "
"got: %f" % contamination)
# allow arbitrary input such as PyThreshld object
self.contamination = contamination
# noinspection PyIncorrectDocstring
@abc.abstractmethod
def fit(self, X, y=None):
"""Fit detector. y is ignored in unsupervised methods.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Fitted estimator.
"""
pass
@abc.abstractmethod
def decision_function(self, X):
"""Predict raw anomaly scores of X using the fitted detector.
The anomaly score of an input sample is computed based on the fitted
detector. For consistency, outliers are assigned with
higher anomaly scores.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples. Sparse matrices are accepted only
if they are supported by the base estimator.
Returns
-------
anomaly_scores : numpy array of shape (n_samples,)
The anomaly score of the input samples.
"""
pass
@deprecated()
def fit_predict(self, X, y=None):
"""Fit detector first and then predict whether a particular sample
is an outlier or not. y is ignored in unsupervised models.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
outlier_labels : numpy array of shape (n_samples,)
For each observation, tells whether
it should be considered as an outlier according to the
fitted model. 0 stands for inliers and 1 for outliers.
.. deprecated:: 0.6.9
`fit_predict` will be removed in pyod 0.8.0.; it will be
replaced by calling `fit` function first and then accessing
`labels_` attribute for consistency.
"""
self.fit(X, y)
return self.labels_
def predict(self, X, return_confidence=False):
"""Predict if a particular sample is an outlier or not.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
return_confidence : boolean, optional(default=False)
If True, also return the confidence of prediction.
Returns
-------
outlier_labels : numpy array of shape (n_samples,)
For each observation, tells whether
it should be considered as an outlier according to the
fitted model. 0 stands for inliers and 1 for outliers.
confidence : numpy array of shape (n_samples,).
Only if return_confidence is set to True.
"""
check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_'])
pred_score = self.decision_function(X)
if isinstance(self.contamination, (float, int)):
prediction = (pred_score > self.threshold_).astype('int').ravel()
# if this is a PyThresh object
else:
prediction = self.contamination.eval(pred_score)
if return_confidence:
confidence = self.predict_confidence(X)
return prediction, confidence
return prediction
def predict_proba(self, X, method='linear', return_confidence=False):
"""Predict the probability of a sample being outlier. Two approaches
are possible:
1. simply use Min-max conversion to linearly transform the outlier
scores into the range of [0,1]. The model must be
fitted first.
2. use unifying scores, see :cite:`kriegel2011interpreting`.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
method : str, optional (default='linear')
probability conversion method. It must be one of
'linear' or 'unify'.
return_confidence : boolean, optional(default=False)
If True, also return the confidence of prediction.
Returns
-------
outlier_probability : numpy array of shape (n_samples, n_classes)
For each observation, tells whether or not
it should be considered as an outlier according to the
fitted model. Return the outlier probability, ranging
in [0,1]. Note it depends on the number of classes, which is by
default 2 classes ([proba of normal, proba of outliers]).
"""
check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_'])
train_scores = self.decision_scores_
test_scores = self.decision_function(X)
probs = np.zeros([X.shape[0], int(self._classes)])
if method == 'linear':
scaler = MinMaxScaler().fit(train_scores.reshape(-1, 1))
probs[:, 1] = scaler.transform(
test_scores.reshape(-1, 1)).ravel().clip(0, 1)
probs[:, 0] = 1 - probs[:, 1]
if return_confidence:
confidence = self.predict_confidence(X)
return probs, confidence
return probs
elif method == 'unify':
# turn output into probability
pre_erf_score = (test_scores - self._mu) / (
self._sigma * np.sqrt(2))
erf_score = erf(pre_erf_score)
probs[:, 1] = erf_score.clip(0, 1).ravel()
probs[:, 0] = 1 - probs[:, 1]
if return_confidence:
confidence = self.predict_confidence(X)
return probs, confidence
return probs
else:
raise ValueError(method,
'is not a valid probability conversion method')
def predict_confidence(self, X):
"""Predict the model's confidence in making the same prediction
under slightly different training sets.
See :cite:`perini2020quantifying`.
Parameters
-------
X : numpy array of shape (n_samples, n_features)
The input samples.
Returns
-------
confidence : numpy array of shape (n_samples,)
For each observation, tells how consistently the model would
make the same prediction if the training set was perturbed.
Return a probability, ranging in [0,1].
"""
check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_'])
n = len(self.decision_scores_)
# todo: this has an optimization opportunity since the scores may
# already be available
test_scores = self.decision_function(X)
count_instances = np.vectorize(
lambda x: np.count_nonzero(self.decision_scores_ <= x))
n_instances = count_instances(test_scores)
# Derive the outlier probability using Bayesian approach
posterior_prob = np.vectorize(lambda x: (1 + x) / (2 + n))(n_instances)
if not isinstance(self.contamination, (float, int)):
contam = np.sum(self.labels_) / n
# if this is a PyThresh object
else:
contam = self.contamination
# Transform the outlier probability into a confidence value
confidence = np.vectorize(
lambda p: 1 - binom.cdf(n - int(n * contam), n, p))(
posterior_prob)
if isinstance(self.contamination, (float, int)):
prediction = (test_scores > self.threshold_).astype('int').ravel()
# if this is a PyThresh object
else:
prediction = self.contamination.eval(test_scores)
np.place(confidence, prediction == 0, 1 - confidence[prediction == 0])
return confidence
def _predict_rank(self, X, normalized=False):
"""Predict the outlyingness rank of a sample by a fitted model. The
method is for outlier detector score combination.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
normalized : bool, optional (default=False)
If set to True, all ranks are normalized to [0,1].
Returns
-------
ranks : array, shape (n_samples,)
Outlying rank of a sample according to the training data.
"""
check_is_fitted(self, ['decision_scores_'])
test_scores = self.decision_function(X)
train_scores = self.decision_scores_
sorted_train_scores = np.sort(train_scores)
ranks = np.searchsorted(sorted_train_scores, test_scores)
if normalized:
# return normalized ranks
ranks = ranks / ranks.max()
return ranks
@deprecated()
def fit_predict_score(self, X, y, scoring='roc_auc_score'):
"""Fit the detector, predict on samples, and evaluate the model by
predefined metrics, e.g., ROC.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
scoring : str, optional (default='roc_auc_score')
Evaluation metric:
- 'roc_auc_score': ROC score
- 'prc_n_score': Precision @ rank n score
Returns
-------
score : float
.. deprecated:: 0.6.9
`fit_predict_score` will be removed in pyod 0.8.0.; it will be
replaced by calling `fit` function first and then accessing
`labels_` attribute for consistency. Scoring could be done by
calling an evaluation method, e.g., AUC ROC.
"""
self.fit(X)
if scoring == 'roc_auc_score':
score = roc_auc_score(y, self.decision_scores_)
elif scoring == 'prc_n_score':
score = precision_n_scores(y, self.decision_scores_)
else:
raise NotImplementedError('PyOD built-in scoring only supports '
'ROC and Precision @ rank n')
print("{metric}: {score}".format(metric=scoring, score=score))
return score
# def score(self, X, y, scoring='roc_auc_score'):
# """Returns the evaluation resulted on the given test data and labels.
# ROC is chosen as the default evaluation metric
#
# :param X: The input samples
# :type X: numpy array of shape (n_samples, n_features)
#
# :param y: Outlier labels of the input samples
# :type y: array, shape (n_samples,)
#
# :param scoring: Evaluation metric
#
# -' roc_auc_score': ROC score
# - 'prc_n_score': Precision @ rank n score
# :type scoring: str, optional (default='roc_auc_score')
#
# :return: Evaluation score
# :rtype: float
# """
# check_is_fitted(self, ['decision_scores_'])
# if scoring == 'roc_auc_score':
# score = roc_auc_score(y, self.decision_function(X))
# elif scoring == 'prc_n_score':
# score = precision_n_scores(y, self.decision_function(X))
# else:
# raise NotImplementedError('PyOD built-in scoring only supports '
# 'ROC and Precision @ rank n')
#
# print("{metric}: {score}".format(metric=scoring, score=score))
#
# return score
def _set_n_classes(self, y):
"""Set the number of classes if `y` is presented, which is not
expected. It could be useful for multi-class outlier detection.
Parameters
----------
y : numpy array of shape (n_samples,)
Ground truth.
Returns
-------
self
"""
self._classes = 2 # default as binary classification
if y is not None:
check_classification_targets(y)
self._classes = len(np.unique(y))
warnings.warn(
"y should not be presented in unsupervised learning.")
return self
def _process_decision_scores(self):
"""Internal function to calculate key attributes:
- threshold_: used to decide the binary label
- labels_: binary labels of training data
Returns
-------
self
"""
if isinstance(self.contamination, (float, int)):
self.threshold_ = percentile(self.decision_scores_,
100 * (1 - self.contamination))
self.labels_ = (self.decision_scores_ > self.threshold_).astype(
'int').ravel()
# if this is a PyThresh object
else:
self.labels_ = self.contamination.eval(self.decision_scores_)
self.threshold_ = self.contamination.thresh_
if not self.threshold_:
self.threshold_ = np.sum(self.labels_) / len(self.labels_)
# calculate for predict_proba()
self._mu = np.mean(self.decision_scores_)
self._sigma = np.std(self.decision_scores_)
return self
# noinspection PyMethodParameters
def _get_param_names(cls):
# noinspection PyPep8
"""Get parameter names for the estimator
See http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
and sklearn/base.py for more information.
"""
# fetch the constructor or the original constructor before
# deprecation wrapping if any
init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
if init is object.__init__:
# No explicit constructor to introspect
return []
# introspect the constructor arguments to find the model parameters
# to represent
init_signature = signature(init)
# Consider the constructor parameters excluding 'self'
parameters = [p for p in init_signature.parameters.values()
if p.name != 'self' and p.kind != p.VAR_KEYWORD]
for p in parameters:
if p.kind == p.VAR_POSITIONAL:
raise RuntimeError("scikit-learn estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s with constructor %s doesn't "
" follow this convention."
% (cls, init_signature))
# Extract and sort argument names excluding 'self'
return sorted([p.name for p in parameters])
# noinspection PyPep8
def get_params(self, deep=True):
"""Get parameters for this estimator.
See http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
and sklearn/base.py for more information.
Parameters
----------
deep : bool, optional (default=True)
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : mapping of string to any
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
# We need deprecation warnings to always be on in order to
# catch deprecated param values.
# This is set in utils/__init__.py but it gets overwritten
# when running under python3 somehow.
warnings.simplefilter("always", DeprecationWarning)
try:
with warnings.catch_warnings(record=True) as w:
value = getattr(self, key, None)
if len(w) and w[0].category == DeprecationWarning:
# if the parameter is deprecated, don't show it
continue
finally:
warnings.filters.pop(0)
# XXX: should we rather test if instance of estimator?
if deep and hasattr(value, 'get_params'):
deep_items = value.get_params().items()
out.update((key + '__' + k, val) for k, val in deep_items)
out[key] = value
return out
def set_params(self, **params):
# noinspection PyPep8
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
See http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
and sklearn/base.py for more information.
Returns
-------
self : object
"""
if not params:
# Simple optimization to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
nested_params = defaultdict(dict) # grouped by prefix
for key, value in params.items():
key, delim, sub_key = key.partition('__')
if key not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(key, self))
if delim:
nested_params[key][sub_key] = value
else:
setattr(self, key, value)
for key, sub_params in nested_params.items():
valid_params[key].set_params(**sub_params)
return self
def __repr__(self):
# noinspection PyPep8
"""
See http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
and sklearn/base.py for more information.
"""
class_name = self.__class__.__name__
return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False),
offset=len(class_name), ),) |