Spaces:
Running
Running
File size: 34,566 Bytes
d03866e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
import datetime
import itertools
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, DistributedSampler
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import random
import numpy as np
from typing import Tuple, List, Dict, Any, Union, Optional
import argparse
import json
import numpy as np
import torch
from torch.utils.data import Dataset
import random
import os
import pickle
from typing import Dict, List, Union, Optional, Tuple
from pathlib import Path
from dataclasses import dataclass
import sys
from models.time_rcd.ts_encoder_bi_bias import TimeSeriesEncoder
from models.time_rcd.time_rcd_config import TimeRCDConfig, default_config
import warnings
warnings.filterwarnings("ignore")
# PYTHONPATH=/home2/lijinbo/Projects/AnomalyLlava-master/ python src/models/Moirai/AnomalyLlava_pretrain_multi.py
@dataclass
class PretrainBatch:
"""Batch structure for pretraining tasks."""
time_series: torch.Tensor
labels: torch.Tensor
masked_time_series: torch.Tensor
mask_indices: torch.Tensor
class ChatTSAnomalyPretrainDataset(Dataset):
def __init__(self,
dataset_dir: str,
filename: str,
split: str = 'train',
train_ratio: float = 0.95,
seed: int = 42):
file_path = os.path.join(dataset_dir, filename)
with open(file_path, 'rb') as f:
dataset = pickle.load(f)
random.seed(seed)
indices = list(range(len(dataset)))
random.shuffle(indices)
num_train = int(len(dataset) * train_ratio)
if split == 'train':
selected_indices = indices[:num_train]
elif split == 'test':
selected_indices = indices[num_train:]
else:
raise ValueError("split must be 'train' or 'test'")
self.data = [dataset[i] for i in selected_indices]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
time_series = torch.tensor(sample['time_series'], dtype=torch.float32)
normal_time_series = torch.tensor(sample['normal_time_series'], dtype=torch.float32)
labels = torch.tensor(sample['labels'], dtype=torch.long)
attribute = sample['attribute']
return time_series, normal_time_series, labels, attribute
class TimeSeriesPretrainModel(nn.Module):
"""Model for time series pretraining with masked reconstruction and anomaly detection."""
def __init__(self, config: TimeRCDConfig):
super().__init__()
self.config = config
# Extract TimeSeriesEncoder parameters from config
ts_config = config.ts_config
self.ts_encoder = TimeSeriesEncoder(
d_model=ts_config.d_model,
d_proj=ts_config.d_proj,
patch_size=ts_config.patch_size,
num_layers=ts_config.num_layers,
num_heads=ts_config.num_heads,
d_ff_dropout=ts_config.d_ff_dropout,
use_rope=ts_config.use_rope,
num_features=ts_config.num_features,
activation=ts_config.activation
)
# Masked reconstruction head
self.reconstruction_head = nn.Sequential(
nn.Linear(config.ts_config.d_proj, config.ts_config.d_proj * 4),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj * 4, config.ts_config.d_proj * 4),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj * 4, 1) # (B, seq_len, num_features, 1)
)
# Anomaly detection head
self.anomaly_head = nn.Sequential(
nn.Linear(config.ts_config.d_proj, config.ts_config.d_proj // 2),
nn.GELU(),
nn.Dropout(config.dropout),
nn.Linear(config.ts_config.d_proj // 2, 2) # (B, seq_len, num_features, 2) for binary classification
)
self.anomaly_head.apply(self._init_weights)
self.reconstruction_head.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.xavier_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
def forward(self, time_series: torch.Tensor, mask: Optional[torch.Tensor] = None):
"""Forward pass through the encoder."""
local_embeddings = self.ts_encoder(time_series, mask)
return local_embeddings
def masked_reconstruction_loss(self,
local_embeddings: torch.Tensor, # (B, seq_len, num_features, d_proj)
original_time_series: torch.Tensor, # (B, seq_len, num_features),
mask: torch.Tensor # (B, seq_len)
) -> torch.Tensor:
"""Compute masked reconstruction loss."""
batch_size, seq_len, num_features = original_time_series.shape
patch_size = self.config.ts_config.patch_size
# 确保数据类型一致
mask = mask.bool()
# 只对 masked 的位置计算损失
# local_embeddings: [B, seq_len, num_features, d_proj]
# 通过重构头预测原始值
reconstructed = self.reconstruction_head(local_embeddings) # (B, seq_len, num_features, 1)
reconstructed = reconstructed.view(batch_size, seq_len, num_features)
# 只对被 mask 的位置计算损失
mask_expanded = mask.unsqueeze(-1).expand(-1, -1, num_features) # (B, seq_len, num_features)
reconstruction_loss = F.mse_loss(
reconstructed[mask_expanded],
original_time_series[mask_expanded]
)
return reconstruction_loss
def anomaly_detection_loss(self,
local_embeddings: torch.Tensor, # (B, seq_len, num_features, d_proj)
labels: torch.Tensor) -> torch.Tensor: # (B, seq_len)
"""Compute anomaly detection loss for each timestep."""
# Project local embeddings to anomaly scores
logits = self.anomaly_head(local_embeddings) # (B, seq_len, num_features, 2)
logits = torch.mean(logits, dim=-2) # Average over num_features to get (B, seq_len, 2)
# Reshape for loss computation
batch_size, seq_len, _ = logits.shape
logits = logits.view(-1, 2) # (B*seq_len, 2)
labels = labels.view(-1) # (B*seq_len)
labels = (labels > 0.5).long()
# Create mask for valid labels (not padding)
valid_mask = (labels != -1)
# Compute loss only on valid timesteps
if valid_mask.sum() > 0:
anomaly_loss = F.cross_entropy(
logits[valid_mask],
labels[valid_mask]
)
else:
anomaly_loss = torch.tensor(0.0, device=logits.device)
return anomaly_loss
def create_random_mask(time_series: torch.Tensor, #(B, max_seq_len, num_features)
attention_mask: torch.Tensor, # (B, max_seq_len)
mask_ratio: float = 0.15) -> Tuple[torch.Tensor, torch.Tensor]:
"""Create random mask for time series patches, only masking valid sequence parts."""
batch_size, seq_len, num_features = time_series.shape
patch_size = default_config.ts_config.patch_size
mask = torch.zeros(batch_size, seq_len) # (B, max_seq_len)
for i in range(batch_size):
# Get valid sequence length for this sample
valid_length = attention_mask[i].sum().item()
# Calculate number of patches in valid sequence
num_valid_patches = (valid_length - 1) // patch_size + 1
num_masked = int(num_valid_patches * mask_ratio)
if num_masked > 0:
# Only select patches from valid sequence
masked_patches = torch.randperm(num_valid_patches)[:num_masked]
for j in masked_patches:
start_idx = j * patch_size
end_idx = min((j + 1) * patch_size, valid_length) # Don't exceed valid length
mask[i, start_idx:end_idx] = 1
# Create masked time series - only mask valid parts
masked_time_series = time_series.clone()
mask_indices = mask.bool() & attention_mask # Only mask where both mask and attention_mask are True
mask_expanded = mask_indices.unsqueeze(-1).expand(-1, -1, num_features) # (B, max_seq_len, num_features)
# mask的部分赋值为0而不是随机
masked_time_series[mask_expanded] = 0.0
# masked_time_series[mask_expanded] = torch.randn_like(masked_time_series[mask_expanded]) * 0.1
# Update mask to only include valid parts
mask = mask * attention_mask.float()
return masked_time_series, mask # (B, max_seq_len, num_features), (B, max_seq_len)
def collate_fn(batch):
"""Collate function for pretraining dataset."""
time_series_list, normal_time_series_list, labels_list, attribute_list = zip(*batch)
# Convert to tensors and pad sequences
if time_series_list[0].ndim == 1:
time_series_tensors = [ts.unsqueeze(-1) for ts in time_series_list] # Add feature dimension
normal_time_series_tensors = [nts.unsqueeze(-1) for nts in normal_time_series_list]
else:
time_series_tensors = [ts for ts in time_series_list]
normal_time_series_tensors = [nts for nts in normal_time_series_list]
# standardize time series
concatenated = torch.cat(time_series_tensors, dim=0) # (total_length, num_features)
mean = concatenated.mean(dim=0, keepdim=True) # (1, num_features)
std = concatenated.std(dim=0, keepdim=True) # (1, num_features)
std = std + 1e-4
time_series_tensors_std = [(ts - mean) / std for ts in time_series_tensors]
normal_time_series_tensors_std = [(nts - mean) / std for nts in normal_time_series_tensors]
time_series_tensors = time_series_tensors_std
normal_time_series_tensors = normal_time_series_tensors_std
# labels_tensor = torch.stack(labels_list)
labels = [label for label in labels_list]
# Pad time series to same length
padded_time_series = torch.nn.utils.rnn.pad_sequence(
time_series_tensors, batch_first=True, padding_value=0.0
) # (B, max_seq_len, num_features)
padded_normal_time_series = torch.nn.utils.rnn.pad_sequence(
normal_time_series_tensors, batch_first=True, padding_value=0.0
) # (B, max_seq_len, num_features)
padded_labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=-1
) # (B, max_seq_len)
sequence_lengths = [ts.size(0) for ts in time_series_tensors]
B, max_seq_len, num_features = padded_time_series.shape
attention_mask = torch.zeros(B, max_seq_len, dtype=torch.bool) # (B, max_seq_len)
for i, length in enumerate(sequence_lengths):
attention_mask[i, :length] = True
# Create random masks for reconstruction task - only mask valid sequence parts
masked_time_series, mask = create_random_mask(padded_time_series, attention_mask)
return {
'time_series': padded_time_series,
'normal_time_series': padded_normal_time_series,
'masked_time_series': masked_time_series,
'mask': mask, # for reconstruction task
'labels': padded_labels,
'attention_mask': attention_mask, # for padding
'attribute': attribute_list
}
def set_seed(seed: int) -> None:
"""Set random seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_distributed(rank: int, world_size: int, config: TimeRCDConfig) -> None:
"""Setup distributed training environment."""
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = config.dist_port
try:
dist.init_process_group(
"nccl",
rank=rank,
world_size=world_size,
timeout=datetime.timedelta(minutes=30)
)
torch.cuda.set_device(rank)
if rank == 0:
print(f"Successfully initialized distributed training on rank {rank} with world size {world_size}")
except Exception as e:
print(f"Rank {rank}: Initialization failed with error: {e}")
raise e
def cleanup_distributed() -> None:
"""Clean up distributed training environment."""
if dist.is_initialized():
dist.destroy_process_group()
def evaluate_epoch(test_loader: DataLoader,
model: nn.Module,
config: TimeRCDConfig,
device: torch.device,
rank: int) -> float:
"""Evaluate model on test dataset."""
model.eval()
total_loss = 0.0
total_recon_loss = 0.0
total_anomaly_loss = 0.0
num_batches = 0
with torch.no_grad():
for batch in itertools.islice(test_loader, min(len(test_loader), config.test_batch_limit)):
# Move data to device
time_series = batch['time_series'].to(device)
masked_time_series = batch['masked_time_series'].to(device)
mask = batch['mask'].to(device)
labels = batch['labels'].to(device)
attention_mask = batch['attention_mask'].to(device)
# Forward pass
local_embeddings = model(masked_time_series, attention_mask & (~mask.bool()))
# Compute losses
recon_loss = model.module.masked_reconstruction_loss(
local_embeddings, time_series, mask
)
anomaly_loss = model.module.anomaly_detection_loss(local_embeddings, labels)
total_loss_batch = recon_loss + anomaly_loss
total_loss += total_loss_batch.item()
total_recon_loss += recon_loss.item()
total_anomaly_loss += anomaly_loss.item()
num_batches += 1
avg_loss = total_loss / num_batches if num_batches > 0 else 0.0
avg_recon_loss = total_recon_loss / num_batches if num_batches > 0 else 0.0
avg_anomaly_loss = total_anomaly_loss / num_batches if num_batches > 0 else 0.0
if rank == 0:
print(f"Validation Results:")
print(f" Average Total Loss: {avg_loss:.4f}")
print(f" Average Recon Loss: {avg_recon_loss:.4f}")
print(f" Average Anomaly Loss: {avg_anomaly_loss:.4f}")
return avg_loss
def train_epoch(train_loader: DataLoader,
model: nn.Module,
optimizer: optim.Optimizer,
config: TimeRCDConfig,
device: torch.device,
epoch: int,
rank: int,
scaler: Optional[torch.cuda.amp.GradScaler] = None) -> float:
"""Train for one epoch with multiple pretraining tasks."""
model.train()
total_loss = 0.0
total_recon_loss = 0.0
total_anomaly_loss = 0.0
num_batches = 0
for batch_idx, batch in enumerate(train_loader):
if batch_idx % 10 == 0:
torch.cuda.empty_cache()
optimizer.zero_grad()
# Move data to device
time_series = batch['time_series'].to(device) # (B, max_seq_len, num_features)
masked_time_series = batch['masked_time_series'].to(device)
mask = batch['mask'].to(device) # (B, max_seq_len)
labels = batch['labels'].to(device)
attention_mask = batch['attention_mask'].to(device)
if config.mixed_precision and scaler is not None:
with torch.amp.autocast('cuda'):
local_embeddings = model(masked_time_series, attention_mask & (~mask.bool()))
recon_loss = model.module.masked_reconstruction_loss(
local_embeddings, time_series, mask
)
anomaly_loss = model.module.anomaly_detection_loss(local_embeddings, labels)
total_loss_batch = recon_loss + anomaly_loss
scaler.scale(total_loss_batch).backward()
scaler.step(optimizer)
scaler.update()
else:
local_embeddings = model(masked_time_series, attention_mask & (~mask.bool()))
recon_loss = model.module.masked_reconstruction_loss(
local_embeddings, time_series, mask
)
anomaly_loss = model.module.anomaly_detection_loss(local_embeddings, labels)
total_loss_batch = recon_loss + anomaly_loss
total_loss_batch.backward()
optimizer.step()
# Accumulate losses
total_loss += total_loss_batch.item()
total_recon_loss += recon_loss.item()
total_anomaly_loss += anomaly_loss.item()
num_batches += 1
# Log progress based on log_freq
if rank == 0 and batch_idx % config.log_freq == 0:
print(f"Epoch {epoch}, Batch {batch_idx}/{len(train_loader)}")
print(f" Total Loss: {total_loss_batch.item():.4f}")
print(f" Recon Loss: {recon_loss.item():.4f}")
print(f" Anomaly Loss: {anomaly_loss.item():.4f}")
avg_loss = total_loss / num_batches
avg_recon_loss = total_recon_loss / num_batches
avg_anomaly_loss = total_anomaly_loss / num_batches
if rank == 0:
print(f"Epoch {epoch} completed:")
print(f" Average Total Loss: {avg_loss:.4f}")
print(f" Average Recon Loss: {avg_recon_loss:.4f}")
print(f" Average Anomaly Loss: {avg_anomaly_loss:.4f}")
return avg_loss
def save_checkpoint(model: nn.Module,
optimizer: optim.Optimizer,
config: TimeRCDConfig,
epoch: int,
avg_loss: float,
rank: int = 0,
is_best: bool = False) -> None:
"""Save model checkpoint."""
if rank != 0:
return
# Extract model state dict (handle DDP wrapper)
if hasattr(model, 'module'):
model_state_dict = model.module.state_dict()
else:
model_state_dict = model.state_dict()
checkpoint = {
'epoch': epoch,
'model_state_dict': model_state_dict,
'optimizer_state_dict': optimizer.state_dict(),
'loss': avg_loss,
'config': config.to_dict()
}
os.makedirs(config.checkpoint_dir, exist_ok=True)
# Always save the latest checkpoint
latest_path = os.path.join(config.checkpoint_dir, "pretrain_checkpoint_latest.pth")
torch.save(checkpoint, latest_path)
# Save the checkpoint at specified frequency
if epoch % config.save_freq == 0 or epoch == config.num_epochs - 1:
save_path = os.path.join(config.checkpoint_dir, f"pretrain_checkpoint_epoch_{epoch}.pth")
torch.save(checkpoint, save_path)
print(f"Checkpoint saved to {save_path} (epoch {epoch}, loss: {avg_loss:.4f})")
# Save best model if this is the best validation loss
if is_best:
best_path = os.path.join(config.checkpoint_dir, "pretrain_checkpoint_best.pth")
torch.save(checkpoint, best_path)
print(f"New best model saved to {best_path} (epoch {epoch}, val_loss: {avg_loss:.4f})")
# Save just the time series encoder for downstream tasks
if hasattr(model, 'module'):
ts_encoder_state = model.module.ts_encoder.state_dict()
else:
ts_encoder_state = model.ts_encoder.state_dict()
best_encoder_path = os.path.join(config.checkpoint_dir, "pretrained_ts_encoder.pth")
torch.save(ts_encoder_state, best_encoder_path)
print(f"Best pretrained time series encoder saved to {best_encoder_path}")
def train_multiple_datasets(dataset_filenames: List[str], config: TimeRCDConfig) -> None:
"""Train on multiple datasets sequentially with model weight continuation."""
print(f'\n{"=" * 50}')
print(f"Starting Multi-Dataset Sequential Training")
print(f"Number of datasets: {len(dataset_filenames)}")
print(f"Datasets: {dataset_filenames}")
print("Training Mode: Continuous (model weights carried over between datasets)")
print("=" * 50)
# Parse GPU IDs from config
gpu_ids = [int(x.strip()) for x in config.cuda_devices.split(',')]
world_size = len(gpu_ids)
# Set CUDA_VISIBLE_DEVICES
os.environ['CUDA_VISIBLE_DEVICES'] = config.cuda_devices
# Global checkpoint path for model continuation
global_checkpoint_path = None
# global_checkpoint_path = "experiments/checkpoints/pretrain_multi_activate_big/dataset_8_12.pkl/pretrain_checkpoint_best.pth"
for dataset_idx, filename in enumerate(dataset_filenames):
print(f"\n{'='*50}")
print(f"Training on Dataset {dataset_idx + 1}/{len(dataset_filenames)}: {filename}")
if global_checkpoint_path is not None:
print(f"Continuing from previous dataset's trained model...")
print(f"{'='*50}")
batch_size_list = [256, 64, 64, 32, 32, 16, 16, 48,
16, 16, 16, 32, 16, 16, 16, 16,
16, 16, 16, 16, 12, 12, 12, 16,
12, 12, 12, 12, 12, 12, 12, 16,
12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 8]
num_features = int(os.path.splitext(filename)[0].split('_')[-1])
print(f"Using batch size: {batch_size_list[num_features - 1] if num_features <= len(batch_size_list) else batch_size_list[-1]} for {filename}")
if num_features <= len(batch_size_list):
batch_size = batch_size_list[num_features - 1]
else:
batch_size = batch_size_list[-1]
config.batch_size = batch_size
# Create dataset-specific checkpoint directory
original_checkpoint_dir = config.checkpoint_dir
config.checkpoint_dir = os.path.join(original_checkpoint_dir, f"{filename}")
os.makedirs(config.checkpoint_dir, exist_ok=True)
# Set the checkpoint path for model continuation
config.continuation_checkpoint = global_checkpoint_path
config.ts_config.num_features = num_features
if world_size == 1:
# Single GPU training
print(f"Running single GPU pretraining for {filename}...")
train_worker(0, 1, config, filename)
else:
# Multi-GPU distributed training
print(f"Running distributed pretraining for {filename}...")
mp.spawn(
train_worker,
args=(world_size, config, filename),
nprocs=world_size,
join=True
)
# Update global checkpoint path for next dataset
global_checkpoint_path = os.path.join(config.checkpoint_dir, "pretrain_checkpoint_best.pth")
# Restore original checkpoint directory
config.checkpoint_dir = original_checkpoint_dir
print(f"Completed training on dataset: {filename}")
if dataset_idx < len(dataset_filenames) - 1:
print(f"Model weights will be loaded for next dataset training...")
print(f"\n{'='*50}")
print("Multi-Dataset Sequential Training Completed!")
print(f"All {len(dataset_filenames)} datasets have been processed with model continuation.")
print(f"{'='*50}")
def train_worker(rank: int, world_size: int, config: TimeRCDConfig, filename: str = None) -> None:
"""Training worker function for each process."""
print(f"Running DDP on rank {rank} with world_size {world_size} for dataset: {filename}")
# Setup distributed training
setup_distributed(rank, world_size, config)
# Set device for this process
device = torch.device(f"cuda:{rank}")
# Set random seed
set_seed(config.seed + rank)
try:
# Initialize model
model = TimeSeriesPretrainModel(config).to(device)
# Load checkpoint if continuing from previous dataset
checkpoint = None
if hasattr(config, 'continuation_checkpoint') and config.continuation_checkpoint and os.path.exists(config.continuation_checkpoint):
if rank == 0:
print(f"Loading checkpoint from previous dataset: {config.continuation_checkpoint}")
checkpoint = torch.load(config.continuation_checkpoint, map_location=device)
# Handle DDP state_dict compatibility
state_dict = checkpoint['model_state_dict']
# Remove 'module.' prefix if it exists (from DDP wrapped model)
if any(key.startswith('module.') for key in state_dict.keys()):
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith('module.'):
new_key = key[7:] # Remove 'module.' prefix
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
state_dict = new_state_dict
model.load_state_dict(state_dict, strict=False)
if rank == 0:
print(f"Successfully loaded model weights from previous dataset training")
# Wrap model with DDP
# model = DDP(model, device_ids=[rank], find_unused_parameters=True)
model = DDP(model, device_ids=[rank])
# Setup optimizer
optimizer = optim.AdamW(
model.parameters(),
lr=config.learning_rate,
weight_decay=config.weight_decay
)
# Load optimizer state if continuing and optimizer state exists
if checkpoint is not None and 'optimizer_state_dict' in checkpoint:
try:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if rank == 0:
print("Successfully loaded optimizer state from previous dataset training")
except Exception as e:
if rank == 0:
print(f"Warning: Could not load optimizer state: {e}")
print("Continuing with fresh optimizer state")
print("This is normal when model architecture or optimizer parameters change")
# Setup mixed precision scaler
scaler = torch.amp.GradScaler() if config.mixed_precision else None
# Load data
train_dataset = ChatTSAnomalyPretrainDataset(config.pretrain_data_path, filename, split="train")
test_dataset = ChatTSAnomalyPretrainDataset(config.pretrain_data_path, filename, split="test")
# Create distributed samplers
train_sampler = DistributedSampler(
train_dataset,
num_replicas=world_size,
rank=rank,
shuffle=True
)
train_loader = DataLoader(
train_dataset,
batch_size=config.batch_size,
sampler=train_sampler,
collate_fn=collate_fn,
num_workers=2,
pin_memory=True
)
# Create test sampler and loader for validation
test_sampler = DistributedSampler(
test_dataset,
num_replicas=world_size,
rank=rank,
shuffle=False
)
test_loader = DataLoader(
test_dataset,
batch_size=config.batch_size,
sampler=test_sampler,
collate_fn=collate_fn,
num_workers=2,
pin_memory=True
)
# Early stopping parameters
best_val_loss = float('inf')
patience_counter = 0
early_stopping_patience = getattr(config, 'early_stopping_patience', 10)
# Training loop
if rank == 0:
dataset_name = filename if filename else "default"
continuation_info = ""
if hasattr(config, 'continuation_checkpoint') and config.continuation_checkpoint and os.path.exists(config.continuation_checkpoint):
continuation_info = " (continuing from previous dataset)"
print(f"Starting pretraining for {config.num_epochs} epochs on dataset {dataset_name}{continuation_info}...")
print(f"Total training batches per process: {len(train_loader)}")
print(f"Total validation batches per process: {min(config.test_batch_limit, len(test_loader))}")
print(f"Early stopping patience: {early_stopping_patience} epochs")
print(f"Tasks: Masked Reconstruction + Anomaly Detection")
for epoch in range(config.num_epochs):
# Set epoch for distributed samplers
train_sampler.set_epoch(epoch)
test_sampler.set_epoch(epoch)
# Training phase
avg_train_loss = train_epoch(train_loader, model, optimizer,
config, device, epoch, rank, scaler)
# Validation phase
avg_val_loss = evaluate_epoch(test_loader, model, config, device, rank)
# Check if this is the best model so far
is_best = avg_val_loss < best_val_loss
if is_best:
best_val_loss = avg_val_loss
patience_counter = 0
if rank == 0:
print(f"New best validation loss: {best_val_loss:.4f}")
else:
patience_counter += 1
if rank == 0:
print(f"Validation loss did not improve. Patience: {patience_counter}/{early_stopping_patience}")
# Save checkpoint with best model flag
save_checkpoint(model, optimizer, config, epoch, avg_val_loss, rank, is_best)
# Early stopping check
if patience_counter >= early_stopping_patience:
if rank == 0:
print(f"Early stopping triggered after {epoch + 1} epochs")
print(f"Best validation loss: {best_val_loss:.4f}")
break
finally:
# Clean up distributed training
cleanup_distributed()
def main() -> None:
# PYTHONPATH=/home2/lijinbo/Projects/AnomalyLlava-master/ python src/models/Moirai/AnomalyLlava_pretrain_multi.py
"""Main function to launch distributed pretraining."""
# Load configuration
config = default_config
# Update config for pretraining
config.num_epochs = 50
config.learning_rate = 5e-4 # Higher learning rate for pretraining
config.batch_size = 64
config.ts_config.patch_size = 16
config.checkpoint_dir = "checkpoints/"
config.cuda_devices = "3"
config.mixed_precision = False
config.dist_port = "16798"
config.early_stopping_patience = 7 # Stop training if validation loss doesn't improve for 10 epochs
config.pretrain_data_path = "training_data/"
# ===== Multidataset Training Configuration =====
# Change to True for multi-dataset training
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='multi', choices=['multi', 'single'])
args = parser.parse_args()
# Change to True for single-dataset training
if args.mode == 'multi':
use_multi_dataset_training = True
else:
use_multi_dataset_training = False
# Filename for single dataset training
single_dataset_filename = "uni_data_0_1.pkl"
# Filename list for multi-dataset training
dataset_filenames = [
"dataset_0_1.pkl",
"dataset_1_1.pkl",
"dataset_2_1.pkl",
"dataset_7_8.pkl",
"dataset_8_12.pkl",
"dataset_9_16.pkl",
"dataset_10_20.pkl",
]
# Parse GPU IDs from config
gpu_ids = [int(x.strip()) for x in config.cuda_devices.split(',')]
world_size = len(gpu_ids)
print(f"Using GPUs: {gpu_ids}")
print(f"World size: {world_size}")
print(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', config.cuda_devices)}")
print("=" * 50)
print("AnomalyLLava Time Series Pretraining")
print("Tasks:")
print(" 1. Masked Reconstruction - Reconstruct masked time series patches")
print(" 2. Anomaly Detection - Binary classification of normal/anomalous series")
print("Features:")
print(" - Early stopping with validation loss monitoring")
print(" - Best model checkpoint saving")
print(f" - Early stopping patience: {config.early_stopping_patience} epochs")
if use_multi_dataset_training:
print(" - Sequential multi-dataset training with model weight continuation")
print("=" * 50)
# Create checkpoint directory
os.makedirs(config.checkpoint_dir, exist_ok=True)
if use_multi_dataset_training:
# Multi-dataset training
print(f"Training Mode: Multi-Dataset Sequential ({len(dataset_filenames)} datasets)")
print(f"Datasets will be trained sequentially with model weight continuation")
train_multiple_datasets(dataset_filenames, config)
else:
# Single dataset training
print(f"Training Mode: Single Dataset ({single_dataset_filename})")
# Set CUDA_VISIBLE_DEVICES
os.environ['CUDA_VISIBLE_DEVICES'] = config.cuda_devices
num_features = int(os.path.splitext(single_dataset_filename)[0].split('_')[-1])
config.ts_config.num_features = num_features
if world_size == 1:
# Single GPU training
print("Running single GPU pretraining...")
train_worker(0, 1, config, single_dataset_filename)
else:
# Multi-GPU distributed training
print("Running distributed pretraining...")
mp.spawn(
train_worker,
args=(world_size, config, single_dataset_filename),
nprocs=world_size,
join=True
)
if __name__ == "__main__":
main() |