Spaces:
Running
Running
| Multi_algo_HP_dict = { | |
| 'IForest': { | |
| 'n_estimators': [25, 50, 100, 150, 200], | |
| 'max_features': [0.2, 0.4, 0.6, 0.8, 1.0] | |
| }, | |
| 'LOF': { | |
| 'n_neighbors': [10, 20, 30, 40, 50], | |
| 'metric': ['minkowski', 'manhattan', 'euclidean'] | |
| }, | |
| 'PCA': { | |
| 'n_components': [0.25, 0.5, 0.75, None] | |
| }, | |
| 'HBOS': { | |
| 'n_bins': [5, 10, 20, 30, 40], | |
| 'tol': [0.1, 0.3, 0.5, 0.7] | |
| }, | |
| 'OCSVM': { | |
| 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], | |
| 'nu': [0.1, 0.3, 0.5, 0.7] | |
| }, | |
| 'MCD': { | |
| 'support_fraction': [0.2, 0.4, 0.6, 0.8, None] | |
| }, | |
| 'KNN': { | |
| 'n_neighbors': [10, 20, 30, 40, 50], | |
| 'method': ['largest', 'mean', 'median'] | |
| }, | |
| 'KMeansAD': { | |
| 'n_clusters': [10, 20, 30, 40], | |
| 'window_size': [10, 20, 30, 40] | |
| }, | |
| 'COPOD': { | |
| 'HP': [None] | |
| }, | |
| 'CBLOF': { | |
| 'n_clusters': [4, 8, 16, 32], | |
| 'alpha': [0.6, 0.7, 0.8, 0.9] | |
| }, | |
| 'EIF': { | |
| 'n_trees': [25, 50, 100, 200] | |
| }, | |
| 'RobustPCA': { | |
| 'max_iter': [500, 1000, 1500] | |
| }, | |
| 'AutoEncoder': { | |
| 'hidden_neurons': [[64, 32], [32, 16], [128, 64]] | |
| }, | |
| 'CNN': { | |
| 'window_size': [50, 100, 150], | |
| 'num_channel': [[32, 32, 40], [16, 32, 64]] | |
| }, | |
| 'LSTMAD': { | |
| 'window_size': [50, 100, 150], | |
| 'lr': [0.0004, 0.0008] | |
| }, | |
| 'TranAD': { | |
| 'win_size': [5, 10, 50], | |
| 'lr': [1e-3, 1e-4] | |
| }, | |
| 'AnomalyTransformer': { | |
| 'win_size': [50, 100, 150], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'OmniAnomaly': { | |
| 'win_size': [5, 50, 100], | |
| 'lr': [0.002, 0.0002] | |
| }, | |
| 'USAD': { | |
| 'win_size': [5, 50, 100], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'Donut': { | |
| 'win_size': [60, 90, 120], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'TimesNet': { | |
| 'win_size': [32, 96, 192], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'FITS': { | |
| 'win_size': [100, 200], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'OFA': { | |
| 'win_size': [50, 100, 150] | |
| }, | |
| 'Time_RCD': { | |
| 'win_size': 7000 | |
| }, | |
| 'TSPulse': { | |
| 'win_size': [64, 128, 256], | |
| 'batch_size': [32, 64, 128], | |
| 'aggregation_length': [32, 64, 128], | |
| 'aggr_function': ['max', 'mean'], | |
| 'smoothing_length': [4, 8, 16] | |
| } | |
| } | |
| Optimal_Multi_algo_HP_dict = { | |
| 'IForest': {'n_estimators': 25, 'max_features': 0.8}, | |
| 'LOF': {'n_neighbors': 50, 'metric': 'euclidean'}, | |
| 'PCA': {'n_components': 0.25}, | |
| 'HBOS': {'n_bins': 30, 'tol': 0.5}, | |
| 'OCSVM': {'kernel': 'rbf', 'nu': 0.1}, | |
| 'MCD': {'support_fraction': 0.8}, | |
| 'KNN': {'n_neighbors': 50, 'method': 'mean'}, | |
| 'KMeansAD': {'n_clusters': 10, 'window_size': 40}, | |
| 'KShapeAD': {'n_clusters': 20, 'window_size': 40}, | |
| 'COPOD': {'n_jobs':1}, | |
| 'CBLOF': {'n_clusters': 4, 'alpha': 0.6}, | |
| 'EIF': {'n_trees': 50}, | |
| 'RobustPCA': {'max_iter': 1000}, | |
| 'AutoEncoder': {'hidden_neurons': [128, 64]}, | |
| 'CNN': {'window_size': 50, 'num_channel': [32, 32, 40]}, | |
| 'LSTMAD': {'window_size': 150, 'lr': 0.0008}, | |
| 'TranAD': {'win_size': 10, 'lr': 0.001}, | |
| 'AnomalyTransformer': {'win_size': 50, 'lr': 0.001}, | |
| 'OmniAnomaly': {'win_size': 100, 'lr': 0.002}, | |
| 'USAD': {'win_size': 100, 'lr': 0.001}, | |
| 'Donut': {'win_size': 60, 'lr': 0.001}, | |
| 'TimesNet': {'win_size': 96, 'lr': 0.0001}, | |
| 'FITS': {'win_size': 100, 'lr': 0.001}, | |
| 'OFA': {'win_size': 50}, | |
| 'Time_RCD': {'win_size':5000, 'batch_size': 1}, | |
| 'DADA': {'win_size': 100, 'batch_size': 64}, | |
| 'TSPulse': {'win_size': 96 , 'batch_size': 64, 'aggregation_length': 64, 'aggr_function': 'max', 'smoothing_length': 8} | |
| } | |
| Uni_algo_HP_dict = { | |
| 'Sub_IForest': { | |
| 'periodicity': [1, 2, 3], | |
| 'n_estimators': [25, 50, 100, 150, 200] | |
| }, | |
| 'IForest': { | |
| 'n_estimators': [25, 50, 100, 150, 200] | |
| }, | |
| 'Sub_LOF': { | |
| 'periodicity': [1, 2, 3], | |
| 'n_neighbors': [10, 20, 30, 40, 50] | |
| }, | |
| 'LOF': { | |
| 'n_neighbors': [10, 20, 30, 40, 50] | |
| }, | |
| 'POLY': { | |
| 'periodicity': [1, 2, 3], | |
| 'power': [1, 2, 3, 4] | |
| }, | |
| 'MatrixProfile': { | |
| 'periodicity': [1, 2, 3] | |
| }, | |
| 'NORMA': { | |
| 'periodicity': [1, 2, 3], | |
| 'clustering': ['hierarchical', 'kshape'] | |
| }, | |
| 'SAND': { | |
| 'periodicity': [1, 2, 3] | |
| }, | |
| 'Series2Graph': { | |
| 'periodicity': [1, 2, 3] | |
| }, | |
| 'Sub_PCA': { | |
| 'periodicity': [1, 2, 3], | |
| 'n_components': [0.25, 0.5, 0.75, None] | |
| }, | |
| 'Sub_HBOS': { | |
| 'periodicity': [1, 2, 3], | |
| 'n_bins': [5, 10, 20, 30, 40] | |
| }, | |
| 'Sub_OCSVM': { | |
| 'periodicity': [1, 2, 3], | |
| 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'] | |
| }, | |
| 'Sub_MCD': { | |
| 'periodicity': [1, 2, 3], | |
| 'support_fraction': [0.2, 0.4, 0.6, 0.8, None] | |
| }, | |
| 'Sub_KNN': { | |
| 'periodicity': [1, 2, 3], | |
| 'n_neighbors': [10, 20, 30, 40, 50], | |
| }, | |
| 'KMeansAD_U': { | |
| 'periodicity': [1, 2, 3], | |
| 'n_clusters': [10, 20, 30, 40], | |
| }, | |
| 'KShapeAD': { | |
| 'periodicity': [1, 2, 3] | |
| }, | |
| 'AutoEncoder': { | |
| 'window_size': [50, 100, 150], | |
| 'hidden_neurons': [[64, 32], [32, 16], [128, 64]] | |
| }, | |
| 'CNN': { | |
| 'window_size': [50, 100, 150], | |
| 'num_channel': [[32, 32, 40], [16, 32, 64]] | |
| }, | |
| 'LSTMAD': { | |
| 'window_size': [50, 100, 150], | |
| 'lr': [0.0004, 0.0008] | |
| }, | |
| 'TranAD': { | |
| 'win_size': [5, 10, 50], | |
| 'lr': [1e-3, 1e-4] | |
| }, | |
| 'AnomalyTransformer': { | |
| 'win_size': [50, 100, 150], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'OmniAnomaly': { | |
| 'win_size': [5, 50, 100], | |
| 'lr': [0.002, 0.0002] | |
| }, | |
| 'USAD': { | |
| 'win_size': [5, 50, 100], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'Donut': { | |
| 'win_size': [60, 90, 120], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'TimesNet': { | |
| 'win_size': [32, 96, 192], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'FITS': { | |
| 'win_size': [100, 200], | |
| 'lr': [1e-3, 1e-4, 1e-5] | |
| }, | |
| 'OFA': { | |
| 'win_size': [50, 100, 150] | |
| }, | |
| # 'Time_RCD': { | |
| # 'win_size': [1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000], | |
| # 'batch_size': [32, 64, 128] | |
| # } | |
| } | |
| Optimal_Uni_algo_HP_dict = { | |
| 'Sub_IForest': {'periodicity': 1, 'n_estimators': 150}, | |
| 'IForest': {'n_estimators': 200}, | |
| 'Sub_LOF': {'periodicity': 2, 'n_neighbors': 30}, | |
| 'LOF': {'n_neighbors': 50}, | |
| 'POLY': {'periodicity': 1, 'power': 4}, | |
| 'MatrixProfile': {'periodicity': 1}, | |
| 'NORMA': {'periodicity': 1, 'clustering': 'kshape'}, | |
| 'SAND': {'periodicity': 1}, | |
| 'Series2Graph': {'periodicity': 1}, | |
| 'SR': {'periodicity': 1}, | |
| 'Sub_PCA': {'periodicity': 1, 'n_components': None}, | |
| 'Sub_HBOS': {'periodicity': 1, 'n_bins': 10}, | |
| 'Sub_OCSVM': {'periodicity': 2, 'kernel': 'rbf'}, | |
| 'Sub_MCD': {'periodicity': 3, 'support_fraction': None}, | |
| 'Sub_KNN': {'periodicity': 2, 'n_neighbors': 50}, | |
| 'KMeansAD_U': {'periodicity': 2, 'n_clusters': 10}, | |
| 'KShapeAD': {'periodicity': 1}, | |
| 'FFT': {}, | |
| 'Left_STAMPi': {}, | |
| 'AutoEncoder': {'window_size': 100, 'hidden_neurons': [128, 64]}, | |
| 'CNN': {'window_size': 50, 'num_channel': [32, 32, 40]}, | |
| 'LSTMAD': {'window_size': 100, 'lr': 0.0008}, | |
| 'TranAD': {'win_size': 10, 'lr': 0.0001}, | |
| 'AnomalyTransformer': {'win_size': 50, 'lr': 0.001}, | |
| 'OmniAnomaly': {'win_size': 5, 'lr': 0.002}, | |
| 'USAD': {'win_size': 100, 'lr': 0.001}, | |
| 'Donut': {'win_size': 60, 'lr': 0.0001}, | |
| 'TimesNet': {'win_size': 32, 'lr': 0.0001}, | |
| 'FITS': {'win_size': 100, 'lr': 0.0001}, | |
| 'OFA': {'win_size': 50}, | |
| 'Lag_Llama': {'win_size': 96}, | |
| 'Chronos': {'win_size': 100}, | |
| 'TimesFM': {'win_size': 96}, | |
| 'MOMENT_ZS': {'win_size': 64}, | |
| 'MOMENT_FT': {'win_size': 64}, | |
| 'M2N2': {}, | |
| 'DADA': {'win_size': 100}, | |
| 'Time_MOE': {'win_size':96}, | |
| 'Time_RCD': {'win_size':5000, 'batch_size': 64}, | |
| 'Time_RCD_Reconstruction': {'win_size':5000, 'batch_size': 128}, | |
| 'Time_RCD_Reconstruction_Anomaly_Head': {'win_size':5000, 'batch_size': 128}, | |
| 'Time_RCD_Reconstruction_Random_Mask_Anomaly_Head': {'win_size':5000, 'batch_size': 128}, | |
| 'TSPulse': {'win_size':96, 'batch_size': 64, 'aggregation_length': 64, 'aggr_function': 'max', 'smoothing_length': 8} | |
| } |