Time_RCD / models /CNN.py
Oliver Le
Initial commit
d03866e
from typing import Dict
import torchinfo
import tqdm, math
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from ..utils.utility import get_activation_by_name
from ..utils.torch_utility import EarlyStoppingTorch, get_gpu
from ..utils.dataset import ForecastDataset
class AdaptiveConcatPool1d(nn.Module):
def __init__(self):
super().__init__()
self.ap = torch.nn.AdaptiveAvgPool1d(1)
self.mp = torch.nn.AdaptiveAvgPool1d(1)
def forward(self, x):
return torch.cat([self.ap(x), self.mp(x)], 1)
class CNNModel(nn.Module):
def __init__(self,
n_features,
num_channel=[32, 32, 40],
kernel_size=3,
stride=1,
predict_time_steps=1,
dropout_rate=0.25,
hidden_activation='relu',
device='cpu'):
# initialize the super class
super(CNNModel, self).__init__()
# save the default values
self.n_features = n_features
self.dropout_rate = dropout_rate
self.hidden_activation = hidden_activation
self.kernel_size = kernel_size
self.stride = stride
self.predict_time_steps = predict_time_steps
self.num_channel = num_channel
self.device = device
# get the object for the activations functions
self.activation = get_activation_by_name(hidden_activation)
# initialize encoder and decoder as a sequential
self.conv_layers = nn.Sequential()
prev_channels = self.n_features
for idx, out_channels in enumerate(self.num_channel[:-1]):
self.conv_layers.add_module(
"conv" + str(idx),
torch.nn.Conv1d(prev_channels, self.num_channel[idx + 1],
self.kernel_size, self.stride))
self.conv_layers.add_module(self.hidden_activation + str(idx),
self.activation)
self.conv_layers.add_module("pool" + str(idx), nn.MaxPool1d(kernel_size=2))
prev_channels = out_channels
self.fc = nn.Sequential(
AdaptiveConcatPool1d(),
torch.nn.Flatten(),
torch.nn.Linear(2*self.num_channel[-1], self.num_channel[-1]),
torch.nn.ReLU(),
torch.nn.Dropout(dropout_rate),
torch.nn.Linear(self.num_channel[-1], self.n_features)
)
def forward(self, x):
b, l, c = x.shape
x = x.view(b, c, l)
x = self.conv_layers(x) # [128, feature, 23]
outputs = torch.zeros(self.predict_time_steps, b, self.n_features).to(self.device)
for t in range(self.predict_time_steps):
decoder_input = self.fc(x)
outputs[t] = torch.squeeze(decoder_input, dim=-2)
return outputs
class CNN():
def __init__(self,
window_size=100,
pred_len=1,
batch_size=128,
epochs=50,
lr=0.0008,
feats=1,
num_channel=[32, 32, 40],
validation_size=0.2):
super().__init__()
self.__anomaly_score = None
cuda = True
self.y_hats = None
self.cuda = cuda
self.device = get_gpu(self.cuda)
self.window_size = window_size
self.pred_len = pred_len
self.batch_size = batch_size
self.epochs = epochs
self.feats = feats
self.num_channel = num_channel
self.lr = lr
self.validation_size = validation_size
self.model = CNNModel(n_features=feats, num_channel=num_channel, predict_time_steps=self.pred_len, device=self.device).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size=5, gamma=0.75)
self.loss = nn.MSELoss()
self.save_path = None
self.early_stopping = EarlyStoppingTorch(save_path=self.save_path, patience=3)
self.mu = None
self.sigma = None
self.eps = 1e-10
def fit(self, data):
tsTrain = data[:int((1-self.validation_size)*len(data))]
tsValid = data[int((1-self.validation_size)*len(data)):]
train_loader = DataLoader(
ForecastDataset(tsTrain, window_size=self.window_size, pred_len=self.pred_len),
batch_size=self.batch_size,
shuffle=True)
valid_loader = DataLoader(
ForecastDataset(tsValid, window_size=self.window_size, pred_len=self.pred_len),
batch_size=self.batch_size,
shuffle=False)
for epoch in range(1, self.epochs + 1):
self.model.train(mode=True)
avg_loss = 0
loop = tqdm.tqdm(enumerate(train_loader),total=len(train_loader),leave=True)
for idx, (x, target) in loop:
x, target = x.to(self.device), target.to(self.device)
# print('x: ', x.shape) # (bs, win, feat)
# print('target: ', target.shape) # # (bs, pred_len, feat)
# print('len(tsTrain): ', len(tsTrain))
# print('len(train_loader): ', len(train_loader))
self.optimizer.zero_grad()
output = self.model(x)
output = output.view(-1, self.feats*self.pred_len)
target = target.view(-1, self.feats*self.pred_len)
loss = self.loss(output, target)
loss.backward()
self.optimizer.step()
avg_loss += loss.cpu().item()
loop.set_description(f'Training Epoch [{epoch}/{self.epochs}]')
loop.set_postfix(loss=loss.item(), avg_loss=avg_loss/(idx+1))
self.model.eval()
scores = []
avg_loss = 0
loop = tqdm.tqdm(enumerate(valid_loader),total=len(valid_loader),leave=True)
with torch.no_grad():
for idx, (x, target) in loop:
x, target = x.to(self.device), target.to(self.device)
output = self.model(x)
output = output.view(-1, self.feats*self.pred_len)
target = target.view(-1, self.feats*self.pred_len)
loss = self.loss(output, target)
avg_loss += loss.cpu().item()
loop.set_description(f'Validation Epoch [{epoch}/{self.epochs}]')
loop.set_postfix(loss=loss.item(), avg_loss=avg_loss/(idx+1))
mse = torch.sub(output, target).pow(2)
scores.append(mse.cpu())
valid_loss = avg_loss/max(len(valid_loader), 1)
self.scheduler.step()
self.early_stopping(valid_loss, self.model)
if self.early_stopping.early_stop or epoch == self.epochs - 1:
# fitting Gaussian Distribution
if len(scores) > 0:
scores = torch.cat(scores, dim=0)
self.mu = torch.mean(scores)
self.sigma = torch.var(scores)
print(self.mu.size(), self.sigma.size())
if self.early_stopping.early_stop:
print(" Early stopping<<<")
break
def decision_function(self, data):
test_loader = DataLoader(
ForecastDataset(data, window_size=self.window_size, pred_len=self.pred_len),
batch_size=self.batch_size,
shuffle=False
)
self.model.eval()
scores = []
y_hats = []
loop = tqdm.tqdm(enumerate(test_loader),total=len(test_loader),leave=True)
with torch.no_grad():
for idx, (x, target) in loop:
x, target = x.to(self.device), target.to(self.device)
output = self.model(x)
output = output.view(-1, self.feats*self.pred_len)
target = target.view(-1, self.feats*self.pred_len)
mse = torch.sub(output, target).pow(2)
y_hats.append(output.cpu())
scores.append(mse.cpu())
loop.set_description(f'Testing: ')
scores = torch.cat(scores, dim=0)
# scores = 0.5 * (torch.log(self.sigma + self.eps) + (scores - self.mu)**2 / (self.sigma+self.eps))
scores = scores.numpy()
scores = np.mean(scores, axis=1)
y_hats = torch.cat(y_hats, dim=0)
y_hats = y_hats.numpy()
l, w = y_hats.shape
# new_scores = np.zeros((l - self.pred_len, w))
# for i in range(w):
# new_scores[:, i] = scores[self.pred_len - i:l-i, i]
# scores = np.mean(new_scores, axis=1)
# scores = np.pad(scores, (0, self.pred_len - 1), 'constant', constant_values=(0,0))
# new_y_hats = np.zeros((l - self.pred_len, w))
# for i in range(w):
# new_y_hats[:, i] = y_hats[self.pred_len - i:l-i, i]
# y_hats = np.mean(new_y_hats, axis=1)
# y_hats = np.pad(y_hats, (0, self.pred_len - 1), 'constant',constant_values=(0,0))
assert scores.ndim == 1
# self.y_hats = y_hats
print('scores: ', scores.shape)
if scores.shape[0] < len(data):
padded_decision_scores_ = np.zeros(len(data))
padded_decision_scores_[: self.window_size+self.pred_len-1] = scores[0]
padded_decision_scores_[self.window_size+self.pred_len-1 : ] = scores
self.__anomaly_score = padded_decision_scores_
return padded_decision_scores_
def anomaly_score(self) -> np.ndarray:
return self.__anomaly_score
def get_y_hat(self) -> np.ndarray:
return self.y_hats
def param_statistic(self, save_file):
model_stats = torchinfo.summary(self.model, (self.batch_size, self.window_size), verbose=0)
with open(save_file, 'w') as f:
f.write(str(model_stats))