Spaces:
Running
Running
| from typing import Dict | |
| import torchinfo | |
| import tqdm, math | |
| import numpy as np | |
| import torch | |
| from torch import nn, optim | |
| from torch.utils.data import DataLoader | |
| from ..utils.utility import get_activation_by_name | |
| from ..utils.torch_utility import EarlyStoppingTorch, get_gpu | |
| from ..utils.dataset import ForecastDataset | |
| class AdaptiveConcatPool1d(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.ap = torch.nn.AdaptiveAvgPool1d(1) | |
| self.mp = torch.nn.AdaptiveAvgPool1d(1) | |
| def forward(self, x): | |
| return torch.cat([self.ap(x), self.mp(x)], 1) | |
| class CNNModel(nn.Module): | |
| def __init__(self, | |
| n_features, | |
| num_channel=[32, 32, 40], | |
| kernel_size=3, | |
| stride=1, | |
| predict_time_steps=1, | |
| dropout_rate=0.25, | |
| hidden_activation='relu', | |
| device='cpu'): | |
| # initialize the super class | |
| super(CNNModel, self).__init__() | |
| # save the default values | |
| self.n_features = n_features | |
| self.dropout_rate = dropout_rate | |
| self.hidden_activation = hidden_activation | |
| self.kernel_size = kernel_size | |
| self.stride = stride | |
| self.predict_time_steps = predict_time_steps | |
| self.num_channel = num_channel | |
| self.device = device | |
| # get the object for the activations functions | |
| self.activation = get_activation_by_name(hidden_activation) | |
| # initialize encoder and decoder as a sequential | |
| self.conv_layers = nn.Sequential() | |
| prev_channels = self.n_features | |
| for idx, out_channels in enumerate(self.num_channel[:-1]): | |
| self.conv_layers.add_module( | |
| "conv" + str(idx), | |
| torch.nn.Conv1d(prev_channels, self.num_channel[idx + 1], | |
| self.kernel_size, self.stride)) | |
| self.conv_layers.add_module(self.hidden_activation + str(idx), | |
| self.activation) | |
| self.conv_layers.add_module("pool" + str(idx), nn.MaxPool1d(kernel_size=2)) | |
| prev_channels = out_channels | |
| self.fc = nn.Sequential( | |
| AdaptiveConcatPool1d(), | |
| torch.nn.Flatten(), | |
| torch.nn.Linear(2*self.num_channel[-1], self.num_channel[-1]), | |
| torch.nn.ReLU(), | |
| torch.nn.Dropout(dropout_rate), | |
| torch.nn.Linear(self.num_channel[-1], self.n_features) | |
| ) | |
| def forward(self, x): | |
| b, l, c = x.shape | |
| x = x.view(b, c, l) | |
| x = self.conv_layers(x) # [128, feature, 23] | |
| outputs = torch.zeros(self.predict_time_steps, b, self.n_features).to(self.device) | |
| for t in range(self.predict_time_steps): | |
| decoder_input = self.fc(x) | |
| outputs[t] = torch.squeeze(decoder_input, dim=-2) | |
| return outputs | |
| class CNN(): | |
| def __init__(self, | |
| window_size=100, | |
| pred_len=1, | |
| batch_size=128, | |
| epochs=50, | |
| lr=0.0008, | |
| feats=1, | |
| num_channel=[32, 32, 40], | |
| validation_size=0.2): | |
| super().__init__() | |
| self.__anomaly_score = None | |
| cuda = True | |
| self.y_hats = None | |
| self.cuda = cuda | |
| self.device = get_gpu(self.cuda) | |
| self.window_size = window_size | |
| self.pred_len = pred_len | |
| self.batch_size = batch_size | |
| self.epochs = epochs | |
| self.feats = feats | |
| self.num_channel = num_channel | |
| self.lr = lr | |
| self.validation_size = validation_size | |
| self.model = CNNModel(n_features=feats, num_channel=num_channel, predict_time_steps=self.pred_len, device=self.device).to(self.device) | |
| self.optimizer = optim.Adam(self.model.parameters(), lr=lr) | |
| self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size=5, gamma=0.75) | |
| self.loss = nn.MSELoss() | |
| self.save_path = None | |
| self.early_stopping = EarlyStoppingTorch(save_path=self.save_path, patience=3) | |
| self.mu = None | |
| self.sigma = None | |
| self.eps = 1e-10 | |
| def fit(self, data): | |
| tsTrain = data[:int((1-self.validation_size)*len(data))] | |
| tsValid = data[int((1-self.validation_size)*len(data)):] | |
| train_loader = DataLoader( | |
| ForecastDataset(tsTrain, window_size=self.window_size, pred_len=self.pred_len), | |
| batch_size=self.batch_size, | |
| shuffle=True) | |
| valid_loader = DataLoader( | |
| ForecastDataset(tsValid, window_size=self.window_size, pred_len=self.pred_len), | |
| batch_size=self.batch_size, | |
| shuffle=False) | |
| for epoch in range(1, self.epochs + 1): | |
| self.model.train(mode=True) | |
| avg_loss = 0 | |
| loop = tqdm.tqdm(enumerate(train_loader),total=len(train_loader),leave=True) | |
| for idx, (x, target) in loop: | |
| x, target = x.to(self.device), target.to(self.device) | |
| # print('x: ', x.shape) # (bs, win, feat) | |
| # print('target: ', target.shape) # # (bs, pred_len, feat) | |
| # print('len(tsTrain): ', len(tsTrain)) | |
| # print('len(train_loader): ', len(train_loader)) | |
| self.optimizer.zero_grad() | |
| output = self.model(x) | |
| output = output.view(-1, self.feats*self.pred_len) | |
| target = target.view(-1, self.feats*self.pred_len) | |
| loss = self.loss(output, target) | |
| loss.backward() | |
| self.optimizer.step() | |
| avg_loss += loss.cpu().item() | |
| loop.set_description(f'Training Epoch [{epoch}/{self.epochs}]') | |
| loop.set_postfix(loss=loss.item(), avg_loss=avg_loss/(idx+1)) | |
| self.model.eval() | |
| scores = [] | |
| avg_loss = 0 | |
| loop = tqdm.tqdm(enumerate(valid_loader),total=len(valid_loader),leave=True) | |
| with torch.no_grad(): | |
| for idx, (x, target) in loop: | |
| x, target = x.to(self.device), target.to(self.device) | |
| output = self.model(x) | |
| output = output.view(-1, self.feats*self.pred_len) | |
| target = target.view(-1, self.feats*self.pred_len) | |
| loss = self.loss(output, target) | |
| avg_loss += loss.cpu().item() | |
| loop.set_description(f'Validation Epoch [{epoch}/{self.epochs}]') | |
| loop.set_postfix(loss=loss.item(), avg_loss=avg_loss/(idx+1)) | |
| mse = torch.sub(output, target).pow(2) | |
| scores.append(mse.cpu()) | |
| valid_loss = avg_loss/max(len(valid_loader), 1) | |
| self.scheduler.step() | |
| self.early_stopping(valid_loss, self.model) | |
| if self.early_stopping.early_stop or epoch == self.epochs - 1: | |
| # fitting Gaussian Distribution | |
| if len(scores) > 0: | |
| scores = torch.cat(scores, dim=0) | |
| self.mu = torch.mean(scores) | |
| self.sigma = torch.var(scores) | |
| print(self.mu.size(), self.sigma.size()) | |
| if self.early_stopping.early_stop: | |
| print(" Early stopping<<<") | |
| break | |
| def decision_function(self, data): | |
| test_loader = DataLoader( | |
| ForecastDataset(data, window_size=self.window_size, pred_len=self.pred_len), | |
| batch_size=self.batch_size, | |
| shuffle=False | |
| ) | |
| self.model.eval() | |
| scores = [] | |
| y_hats = [] | |
| loop = tqdm.tqdm(enumerate(test_loader),total=len(test_loader),leave=True) | |
| with torch.no_grad(): | |
| for idx, (x, target) in loop: | |
| x, target = x.to(self.device), target.to(self.device) | |
| output = self.model(x) | |
| output = output.view(-1, self.feats*self.pred_len) | |
| target = target.view(-1, self.feats*self.pred_len) | |
| mse = torch.sub(output, target).pow(2) | |
| y_hats.append(output.cpu()) | |
| scores.append(mse.cpu()) | |
| loop.set_description(f'Testing: ') | |
| scores = torch.cat(scores, dim=0) | |
| # scores = 0.5 * (torch.log(self.sigma + self.eps) + (scores - self.mu)**2 / (self.sigma+self.eps)) | |
| scores = scores.numpy() | |
| scores = np.mean(scores, axis=1) | |
| y_hats = torch.cat(y_hats, dim=0) | |
| y_hats = y_hats.numpy() | |
| l, w = y_hats.shape | |
| # new_scores = np.zeros((l - self.pred_len, w)) | |
| # for i in range(w): | |
| # new_scores[:, i] = scores[self.pred_len - i:l-i, i] | |
| # scores = np.mean(new_scores, axis=1) | |
| # scores = np.pad(scores, (0, self.pred_len - 1), 'constant', constant_values=(0,0)) | |
| # new_y_hats = np.zeros((l - self.pred_len, w)) | |
| # for i in range(w): | |
| # new_y_hats[:, i] = y_hats[self.pred_len - i:l-i, i] | |
| # y_hats = np.mean(new_y_hats, axis=1) | |
| # y_hats = np.pad(y_hats, (0, self.pred_len - 1), 'constant',constant_values=(0,0)) | |
| assert scores.ndim == 1 | |
| # self.y_hats = y_hats | |
| print('scores: ', scores.shape) | |
| if scores.shape[0] < len(data): | |
| padded_decision_scores_ = np.zeros(len(data)) | |
| padded_decision_scores_[: self.window_size+self.pred_len-1] = scores[0] | |
| padded_decision_scores_[self.window_size+self.pred_len-1 : ] = scores | |
| self.__anomaly_score = padded_decision_scores_ | |
| return padded_decision_scores_ | |
| def anomaly_score(self) -> np.ndarray: | |
| return self.__anomaly_score | |
| def get_y_hat(self) -> np.ndarray: | |
| return self.y_hats | |
| def param_statistic(self, save_file): | |
| model_stats = torchinfo.summary(self.model, (self.batch_size, self.window_size), verbose=0) | |
| with open(save_file, 'w') as f: | |
| f.write(str(model_stats)) | |