Time_RCD / models /COPOD.py
Oliver Le
Initial commit
d03866e
"""
This function is adapted from [pyod] by [yzhao062]
Original source: [https://github.com/yzhao062/pyod]
"""
from __future__ import division
from __future__ import print_function
import warnings
import numpy as np
from joblib import Parallel, delayed
from scipy.stats import skew as skew_sp
from sklearn.utils.validation import check_is_fitted
from sklearn.utils import check_array
from .base import BaseDetector
from ..utils.stat_models import column_ecdf
from ..utils.utility import _partition_estimators
from ..utils.utility import zscore
def skew(X, axis=0):
return np.nan_to_num(skew_sp(X, axis=axis))
def _parallel_ecdf(n_dims, X):
"""Private method to calculate ecdf in parallel.
Parameters
----------
n_dims : int
The number of dimensions of the current input matrix
X : numpy array
The subarray for building the ECDF
Returns
-------
U_l_mat : numpy array
ECDF subarray.
U_r_mat : numpy array
ECDF subarray.
"""
U_l_mat = np.zeros([X.shape[0], n_dims])
U_r_mat = np.zeros([X.shape[0], n_dims])
for i in range(n_dims):
U_l_mat[:, i: i + 1] = column_ecdf(X[:, i: i + 1])
U_r_mat[:, i: i + 1] = column_ecdf(X[:, i: i + 1] * -1)
return U_l_mat, U_r_mat
class COPOD(BaseDetector):
"""COPOD class for Copula Based Outlier Detector.
COPOD is a parameter-free, highly interpretable outlier detection algorithm
based on empirical copula models.
See :cite:`li2020copod` for details.
Parameters
----------
contamination : float in (0., 0.5), optional (default=0.1)
The amount of contamination of the data set, i.e.
the proportion of outliers in the data set. Used when fitting to
define the threshold on the decision function.
n_jobs : optional (default=1)
The number of jobs to run in parallel for both `fit` and
`predict`. If -1, then the number of jobs is set to the
number of cores.
Attributes
----------
decision_scores_ : numpy array of shape (n_samples,)
The outlier scores of the training data.
The higher, the more abnormal. Outliers tend to have higher
scores. This value is available once the detector is
fitted.
threshold_ : float
The threshold is based on ``contamination``. It is the
``n_samples * contamination`` most abnormal samples in
``decision_scores_``. The threshold is calculated for generating
binary outlier labels.
labels_ : int, either 0 or 1
The binary labels of the training data. 0 stands for inliers
and 1 for outliers/anomalies. It is generated by applying
``threshold_`` on ``decision_scores_``.
"""
def __init__(self, contamination=0.1, n_jobs=1, normalize=True):
super(COPOD, self).__init__(contamination=contamination)
#TODO: Make it parameterized for n_jobs
self.n_jobs = n_jobs
self.normalize = normalize
def fit(self, X, y=None):
"""Fit detector. y is ignored in unsupervised methods.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Fitted estimator.
"""
X = check_array(X)
if self.normalize: X = zscore(X, axis=1, ddof=1)
self._set_n_classes(y)
self.decision_scores_ = self.decision_function(X)
self.X_train = X
self._process_decision_scores()
return self
def decision_function(self, X):
"""Predict raw anomaly score of X using the fitted detector.
For consistency, outliers are assigned with larger anomaly scores.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only
if they are supported by the base estimator.
Returns
-------
anomaly_scores : numpy array of shape (n_samples,)
The anomaly score of the input samples.
"""
# use multi-thread execution
if self.n_jobs != 1:
return self._decision_function_parallel(X)
if hasattr(self, 'X_train'):
original_size = X.shape[0]
X = np.concatenate((self.X_train, X), axis=0)
self.U_l = -1 * np.log(column_ecdf(X))
self.U_r = -1 * np.log(column_ecdf(-X))
skewness = np.sign(skew(X, axis=0))
self.U_skew = self.U_l * -1 * np.sign(
skewness - 1) + self.U_r * np.sign(skewness + 1)
self.O = np.maximum(self.U_skew, np.add(self.U_l, self.U_r) / 2)
if hasattr(self, 'X_train'):
decision_scores_ = self.O.sum(axis=1)[-original_size:]
else:
decision_scores_ = self.O.sum(axis=1)
return decision_scores_.ravel()
def _decision_function_parallel(self, X):
"""Predict raw anomaly score of X using the fitted detector.
For consistency, outliers are assigned with larger anomaly scores.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only
if they are supported by the base estimator.
Returns
-------
anomaly_scores : numpy array of shape (n_samples,)
The anomaly score of the input samples.
"""
if hasattr(self, 'X_train'):
original_size = X.shape[0]
X = np.concatenate((self.X_train, X), axis=0)
n_samples, n_features = X.shape[0], X.shape[1]
if n_features < 2:
raise ValueError(
'n_jobs should not be used on one dimensional dataset')
if n_features <= self.n_jobs:
self.n_jobs = n_features
warnings.warn("n_features <= n_jobs; setting them equal instead.")
n_jobs, n_dims_list, starts = _partition_estimators(n_features,
self.n_jobs)
all_results = Parallel(n_jobs=n_jobs, max_nbytes=None,
verbose=True)(
delayed(_parallel_ecdf)(
n_dims_list[i],
X[:, starts[i]:starts[i + 1]],
)
for i in range(n_jobs))
# recover the results
self.U_l = np.zeros([n_samples, n_features])
self.U_r = np.zeros([n_samples, n_features])
for i in range(n_jobs):
self.U_l[:, starts[i]:starts[i + 1]] = all_results[i][0]
self.U_r[:, starts[i]:starts[i + 1]] = all_results[i][1]
self.U_l = -1 * np.log(self.U_l)
self.U_r = -1 * np.log(self.U_r)
skewness = np.sign(skew(X, axis=0))
self.U_skew = self.U_l * -1 * np.sign(
skewness - 1) + self.U_r * np.sign(skewness + 1)
self.O = np.maximum(self.U_skew, np.add(self.U_l, self.U_r) / 2)
if hasattr(self, 'X_train'):
decision_scores_ = self.O.sum(axis=1)[-original_size:]
else:
decision_scores_ = self.O.sum(axis=1)
return decision_scores_.ravel()