Time_RCD / models /LSTMAD.py
Oliver Le
Initial commit
d03866e
from typing import Dict
import torchinfo
import tqdm, math
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from ..utils.torch_utility import EarlyStoppingTorch, get_gpu
from ..utils.dataset import ForecastDataset
class LSTMModel(nn.Module):
def __init__(self, window_size, feats,
hidden_dim, pred_len, num_layers, batch_size, device) -> None:
super().__init__()
self.pred_len = pred_len
self.batch_size = batch_size
self.feats = feats
self.device = device
self.lstm_encoder = nn.LSTM(input_size=feats, hidden_size=hidden_dim, num_layers=num_layers, batch_first=True)
self.lstm_decoder = nn.LSTM(input_size=feats, hidden_size=hidden_dim, num_layers=num_layers, batch_first=True)
self.relu = nn.GELU()
self.fc = nn.Linear(hidden_dim, feats)
def forward(self, src):
_, decoder_hidden = self.lstm_encoder(src)
cur_batch = src.shape[0]
decoder_input = torch.zeros(cur_batch, 1, self.feats).to(self.device)
outputs = torch.zeros(self.pred_len, cur_batch, self.feats).to(self.device)
for t in range(self.pred_len):
decoder_output, decoder_hidden = self.lstm_decoder(decoder_input, decoder_hidden)
decoder_output = self.relu(decoder_output)
decoder_input = self.fc(decoder_output)
outputs[t] = torch.squeeze(decoder_input, dim=-2)
return outputs
class LSTMAD():
def __init__(self,
window_size=100,
pred_len=1,
batch_size=128,
epochs=50,
lr=0.0008,
feats=1,
hidden_dim=20,
num_layer=2,
validation_size=0.2):
super().__init__()
self.__anomaly_score = None
cuda = True
self.y_hats = None
self.cuda = cuda
self.device = get_gpu(self.cuda)
self.window_size = window_size
self.pred_len = pred_len
self.batch_size = batch_size
self.epochs = epochs
self.feats = feats
self.hidden_dim = hidden_dim
self.num_layer = num_layer
self.lr = lr
self.validation_size = validation_size
print('self.device: ', self.device)
self.model = LSTMModel(self.window_size, feats, hidden_dim, self.pred_len, num_layer, batch_size=self.batch_size, device=self.device).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size=5, gamma=0.75)
self.loss = nn.MSELoss()
self.save_path = None
self.early_stopping = EarlyStoppingTorch(save_path=self.save_path, patience=3)
self.mu = None
self.sigma = None
self.eps = 1e-10
def fit(self, data):
tsTrain = data[:int((1-self.validation_size)*len(data))]
tsValid = data[int((1-self.validation_size)*len(data)):]
train_loader = DataLoader(
ForecastDataset(tsTrain, window_size=self.window_size, pred_len=self.pred_len),
batch_size=self.batch_size,
shuffle=True)
valid_loader = DataLoader(
ForecastDataset(tsValid, window_size=self.window_size, pred_len=self.pred_len),
batch_size=self.batch_size,
shuffle=False)
for epoch in range(1, self.epochs + 1):
self.model.train(mode=True)
avg_loss = 0
loop = tqdm.tqdm(enumerate(train_loader),total=len(train_loader),leave=True)
for idx, (x, target) in loop:
x, target = x.to(self.device), target.to(self.device)
# print('x: ', x.shape) # (bs, win, feat)
# print('target: ', target.shape) # # (bs, pred_len, feat)
self.optimizer.zero_grad()
output = self.model(x)
# print('output: ', output.shape) # (pred_len, bs, feat)
output = output.view(-1, self.feats*self.pred_len)
target = target.view(-1, self.feats*self.pred_len)
loss = self.loss(output, target)
loss.backward()
self.optimizer.step()
avg_loss += loss.cpu().item()
loop.set_description(f'Training Epoch [{epoch}/{self.epochs}]')
loop.set_postfix(loss=loss.item(), avg_loss=avg_loss/(idx+1))
self.model.eval()
scores = []
avg_loss = 0
loop = tqdm.tqdm(enumerate(valid_loader),total=len(valid_loader),leave=True)
with torch.no_grad():
for idx, (x, target) in loop:
x, target = x.to(self.device), target.to(self.device)
output = self.model(x)
output = output.view(-1, self.feats*self.pred_len)
target = target.view(-1, self.feats*self.pred_len)
loss = self.loss(output, target)
avg_loss += loss.cpu().item()
loop.set_description(f'Validation Epoch [{epoch}/{self.epochs}]')
loop.set_postfix(loss=loss.item(), avg_loss=avg_loss/(idx+1))
mse = torch.sub(output, target).pow(2)
scores.append(mse.cpu())
valid_loss = avg_loss/max(len(valid_loader), 1)
self.scheduler.step()
self.early_stopping(valid_loss, self.model)
if self.early_stopping.early_stop or epoch == self.epochs - 1:
# fitting Gaussian Distribution
if len(scores) > 0:
scores = torch.cat(scores, dim=0)
self.mu = torch.mean(scores)
self.sigma = torch.var(scores)
print(self.mu.size(), self.sigma.size())
if self.early_stopping.early_stop:
print(" Early stopping<<<")
break
def decision_function(self, data):
test_loader = DataLoader(
ForecastDataset(data, window_size=self.window_size, pred_len=self.pred_len),
batch_size=self.batch_size,
shuffle=False
)
self.model.eval()
scores = []
y_hats = []
loop = tqdm.tqdm(enumerate(test_loader),total=len(test_loader),leave=True)
with torch.no_grad():
for idx, (x, target) in loop:
x, target = x.to(self.device), target.to(self.device)
output = self.model(x)
output = output.view(-1, self.feats*self.pred_len)
target = target.view(-1, self.feats*self.pred_len)
mse = torch.sub(output, target).pow(2)
y_hats.append(output.cpu())
scores.append(mse.cpu())
loop.set_description(f'Testing: ')
scores = torch.cat(scores, dim=0)
# scores = 0.5 * (torch.log(self.sigma + self.eps) + (scores - self.mu)**2 / (self.sigma+self.eps))
scores = scores.numpy()
scores = np.mean(scores, axis=1)
y_hats = torch.cat(y_hats, dim=0)
y_hats = y_hats.numpy()
l, w = y_hats.shape
# new_scores = np.zeros((l - self.pred_len, w))
# for i in range(w):
# new_scores[:, i] = scores[self.pred_len - i:l-i, i]
# scores = np.mean(new_scores, axis=1)
# scores = np.pad(scores, (0, self.pred_len - 1), 'constant', constant_values=(0,0))
# new_y_hats = np.zeros((l - self.pred_len, w))
# for i in range(w):
# new_y_hats[:, i] = y_hats[self.pred_len - i:l-i, i]
# y_hats = np.mean(new_y_hats, axis=1)
# y_hats = np.pad(y_hats, (0, self.pred_len - 1), 'constant',constant_values=(0,0))
assert scores.ndim == 1
# self.y_hats = y_hats
# print('scores: ', scores.shape)
if scores.shape[0] < len(data):
padded_decision_scores_ = np.zeros(len(data))
padded_decision_scores_[: self.window_size+self.pred_len-1] = scores[0]
padded_decision_scores_[self.window_size+self.pred_len-1 : ] = scores
self.__anomaly_score = padded_decision_scores_
return padded_decision_scores_
def anomaly_score(self) -> np.ndarray:
return self.__anomaly_score
def get_y_hat(self) -> np.ndarray:
return self.y_hats
def param_statistic(self, save_file):
model_stats = torchinfo.summary(self.model, (self.batch_size, self.window_size), verbose=0)
with open(save_file, 'w') as f:
f.write(str(model_stats))