Spaces:
Running
Running
| ''' | |
| TimesNet from "TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis" (ICLR 2023) | |
| Code partially from https://github.com/thuml/Time-Series-Library/ | |
| Copyright (c) 2021 THUML @ Tsinghua University | |
| ''' | |
| from typing import Dict | |
| import numpy as np | |
| import torchinfo | |
| import torch | |
| from torch import nn, optim | |
| from torch.utils.data import DataLoader | |
| import torch.nn.functional as F | |
| import torch.fft | |
| from torch.nn.utils import weight_norm | |
| import math | |
| import tqdm | |
| import os | |
| from ..utils.torch_utility import EarlyStoppingTorch, DataEmbedding, adjust_learning_rate, get_gpu | |
| from ..utils.dataset import ReconstructDataset | |
| class Inception_Block_V1(nn.Module): | |
| def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True): | |
| super(Inception_Block_V1, self).__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.num_kernels = num_kernels | |
| kernels = [] | |
| for i in range(self.num_kernels): | |
| kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=2 * i + 1, padding=i)) | |
| self.kernels = nn.ModuleList(kernels) | |
| if init_weight: | |
| self._initialize_weights() | |
| def _initialize_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| def forward(self, x): | |
| res_list = [] | |
| for i in range(self.num_kernels): | |
| res_list.append(self.kernels[i](x)) | |
| res = torch.stack(res_list, dim=-1).mean(-1) | |
| return res | |
| def FFT_for_Period(x, k=2): | |
| # [B, T, C] | |
| xf = torch.fft.rfft(x, dim=1) | |
| # find period by amplitudes | |
| frequency_list = abs(xf).mean(0).mean(-1) | |
| frequency_list[0] = 0 | |
| _, top_list = torch.topk(frequency_list, k) | |
| top_list = top_list.detach().cpu().numpy() | |
| period = x.shape[1] // top_list | |
| return period, abs(xf).mean(-1)[:, top_list] | |
| class TimesBlock(nn.Module): | |
| def __init__(self, | |
| seq_len=96, | |
| pred_len=0, | |
| top_k=3, | |
| d_model=8, | |
| d_ff=16, | |
| num_kernels=6 | |
| ): | |
| super(TimesBlock, self).__init__() | |
| self.seq_len = seq_len | |
| self.pred_len = pred_len | |
| self.k = top_k | |
| # parameter-efficient design | |
| self.conv = nn.Sequential( | |
| Inception_Block_V1(d_model, d_ff, | |
| num_kernels=num_kernels), | |
| nn.GELU(), | |
| Inception_Block_V1(d_ff, d_model, | |
| num_kernels=num_kernels) | |
| ) | |
| def forward(self, x): | |
| B, T, N = x.size() | |
| period_list, period_weight = FFT_for_Period(x, self.k) | |
| res = [] | |
| for i in range(self.k): | |
| period = period_list[i] | |
| # padding | |
| if (self.seq_len + self.pred_len) % period != 0: | |
| length = ( | |
| ((self.seq_len + self.pred_len) // period) + 1) * period | |
| padding = torch.zeros([x.shape[0], (length - (self.seq_len + self.pred_len)), x.shape[2]]).to(x.device) | |
| out = torch.cat([x, padding], dim=1) | |
| else: | |
| length = (self.seq_len + self.pred_len) | |
| out = x | |
| # reshape | |
| out = out.reshape(B, length // period, period, | |
| N).permute(0, 3, 1, 2).contiguous() | |
| # 2D conv: from 1d Variation to 2d Variation | |
| out = self.conv(out) | |
| # reshape back | |
| out = out.permute(0, 2, 3, 1).reshape(B, -1, N) | |
| res.append(out[:, :(self.seq_len + self.pred_len), :]) | |
| res = torch.stack(res, dim=-1) | |
| # adaptive aggregation | |
| period_weight = F.softmax(period_weight, dim=1) | |
| period_weight = period_weight.unsqueeze( | |
| 1).unsqueeze(1).repeat(1, T, N, 1) | |
| res = torch.sum(res * period_weight, -1) | |
| # residual connection | |
| res = res + x | |
| return res | |
| class Model(nn.Module): | |
| """ | |
| Paper link: https://openreview.net/pdf?id=ju_Uqw384Oq | |
| """ | |
| def __init__(self, | |
| seq_len=96, | |
| pred_len=0, | |
| d_model=8, | |
| enc_in=1, | |
| c_out=1, | |
| e_layers=1, | |
| dropout=0.1, | |
| embed='timeF', | |
| freq="t" | |
| ): | |
| super(Model, self).__init__() | |
| self.seq_len = seq_len | |
| self.pred_len = pred_len | |
| self.model = nn.ModuleList([TimesBlock(seq_len=self.seq_len) | |
| for _ in range(e_layers)]) | |
| self.enc_embedding = DataEmbedding(enc_in, d_model, embed, freq, dropout) | |
| self.layer = e_layers | |
| self.layer_norm = nn.LayerNorm(d_model) | |
| self.projection = nn.Linear(d_model, c_out, bias=True) | |
| def anomaly_detection(self, x_enc): | |
| # Normalization from Non-stationary Transformer | |
| means = x_enc.mean(1, keepdim=True).detach() | |
| x_enc = x_enc - means | |
| stdev = torch.sqrt( | |
| torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5) | |
| x_enc /= stdev | |
| # embedding | |
| enc_out = self.enc_embedding(x_enc, None) # [B,T,C] | |
| # TimesNet | |
| for i in range(self.layer): | |
| enc_out = self.layer_norm(self.model[i](enc_out)) | |
| # porject back | |
| dec_out = self.projection(enc_out) | |
| # De-Normalization from Non-stationary Transformer | |
| dec_out = dec_out * \ | |
| (stdev[:, 0, :].unsqueeze(1).repeat( | |
| 1, self.pred_len + self.seq_len, 1)) | |
| dec_out = dec_out + \ | |
| (means[:, 0, :].unsqueeze(1).repeat( | |
| 1, self.pred_len + self.seq_len, 1)) | |
| return dec_out | |
| def forward(self, x_enc): | |
| dec_out = self.anomaly_detection(x_enc) | |
| return dec_out # [B, L, D] | |
| class TimesNet(): | |
| def __init__(self, | |
| win_size=96, | |
| enc_in=1, | |
| epochs=10, | |
| batch_size=128, | |
| lr=1e-4, | |
| patience=3, | |
| features="M", | |
| lradj="type1", | |
| validation_size=0.2): | |
| super().__init__() | |
| self.win_size = win_size | |
| self.enc_in = enc_in | |
| self.batch_size = batch_size | |
| self.lr = lr | |
| self.patience = patience | |
| self.epochs = epochs | |
| self.features = features | |
| self.lradj = lradj | |
| self.validation_size = validation_size | |
| self.__anomaly_score = None | |
| cuda = True | |
| self.y_hats = None | |
| self.cuda = cuda | |
| self.device = get_gpu(self.cuda) | |
| self.model = Model(seq_len=self.win_size, enc_in=self.enc_in, c_out=self.enc_in).float().to(self.device) | |
| self.model_optim = optim.Adam(self.model.parameters(), lr=self.lr) | |
| self.criterion = nn.MSELoss() | |
| self.early_stopping = EarlyStoppingTorch(None, patience=self.patience) | |
| self.input_shape = (self.batch_size, self.win_size, self.enc_in) | |
| def fit(self, data): | |
| tsTrain = data[:int((1-self.validation_size)*len(data))] | |
| tsValid = data[int((1-self.validation_size)*len(data)):] | |
| train_loader = DataLoader( | |
| dataset=ReconstructDataset(tsTrain, window_size=self.win_size), | |
| batch_size=self.batch_size, | |
| shuffle=True | |
| ) | |
| valid_loader = DataLoader( | |
| dataset=ReconstructDataset(tsValid, window_size=self.win_size), | |
| batch_size=self.batch_size, | |
| shuffle=False | |
| ) | |
| train_steps = len(train_loader) | |
| for epoch in range(1, self.epochs + 1): | |
| ## Training | |
| train_loss = 0 | |
| self.model.train() | |
| loop = tqdm.tqdm(enumerate(train_loader),total=len(train_loader),leave=True) | |
| for i, (batch_x, _) in loop: | |
| self.model_optim.zero_grad() | |
| batch_x = batch_x.float().to(self.device) | |
| outputs = self.model(batch_x) | |
| loss = self.criterion(outputs, batch_x) | |
| loss.backward() | |
| self.model_optim.step() | |
| train_loss += loss.cpu().item() | |
| loop.set_description(f'Training Epoch [{epoch}/{self.epochs}]') | |
| loop.set_postfix(loss=loss.item(), avg_loss=train_loss/(i+1)) | |
| ## Validation | |
| self.model.eval() | |
| total_loss = [] | |
| loop = tqdm.tqdm(enumerate(valid_loader),total=len(valid_loader),leave=True) | |
| with torch.no_grad(): | |
| for i, (batch_x, _) in loop: | |
| batch_x = batch_x.float().to(self.device) | |
| outputs = self.model(batch_x) | |
| f_dim = -1 if self.features == 'MS' else 0 | |
| outputs = outputs[:, :, f_dim:] | |
| pred = outputs.detach().cpu() | |
| true = batch_x.detach().cpu() | |
| loss = self.criterion(pred, true) | |
| total_loss.append(loss) | |
| loop.set_description(f'Valid Epoch [{epoch}/{self.epochs}]') | |
| valid_loss = np.average(total_loss) | |
| loop.set_postfix(loss=loss.item(), valid_loss=valid_loss) | |
| self.early_stopping(valid_loss, self.model) | |
| if self.early_stopping.early_stop: | |
| print(" Early stopping<<<") | |
| break | |
| adjust_learning_rate(self.model_optim, epoch + 1, self.lradj, self.lr) | |
| def decision_function(self, data): | |
| test_loader = DataLoader( | |
| dataset=ReconstructDataset(data, window_size=self.win_size), | |
| batch_size=self.batch_size, | |
| shuffle=False | |
| ) | |
| self.model.eval() | |
| attens_energy = [] | |
| y_hats = [] | |
| self.anomaly_criterion = nn.MSELoss(reduce=False) | |
| loop = tqdm.tqdm(enumerate(test_loader),total=len(test_loader),leave=True) | |
| with torch.no_grad(): | |
| for i, (batch_x, _) in loop: | |
| batch_x = batch_x.float().to(self.device) | |
| # reconstruction | |
| outputs = self.model(batch_x) | |
| # criterion | |
| score = torch.mean(self.anomaly_criterion(batch_x, outputs), dim=-1) | |
| y_hat = torch.squeeze(outputs, -1) | |
| score = score.detach().cpu().numpy()[:, -1] | |
| y_hat = y_hat.detach().cpu().numpy()[:, -1] | |
| attens_energy.append(score) | |
| y_hats.append(y_hat) | |
| loop.set_description(f'Testing Phase: ') | |
| attens_energy = np.concatenate(attens_energy, axis=0).reshape(-1) | |
| scores = np.array(attens_energy) | |
| y_hats = np.concatenate(y_hats, axis=0).reshape(-1) | |
| y_hats = np.array(y_hats) | |
| assert scores.ndim == 1 | |
| import shutil | |
| self.save_path = None | |
| if self.save_path and os.path.exists(self.save_path): | |
| shutil.rmtree(self.save_path) | |
| self.__anomaly_score = scores | |
| self.y_hats = y_hats | |
| if self.__anomaly_score.shape[0] < len(data): | |
| self.__anomaly_score = np.array([self.__anomaly_score[0]]*math.ceil((self.win_size-1)/2) + | |
| list(self.__anomaly_score) + [self.__anomaly_score[-1]]*((self.win_size-1)//2)) | |
| return self.__anomaly_score | |
| def anomaly_score(self) -> np.ndarray: | |
| return self.__anomaly_score | |
| def get_y_hat(self) -> np.ndarray: | |
| return self.y_hats | |
| def param_statistic(self, save_file): | |
| model_stats = torchinfo.summary(self.model, self.input_shape, verbose=0) | |
| with open(save_file, 'w') as f: | |
| f.write(str(model_stats)) |