Spaces:
Runtime error
Runtime error
Commit
·
8d4dc71
1
Parent(s):
2657429
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import json
|
| 4 |
-
import os
|
| 5 |
|
| 6 |
from langchain.document_loaders import DataFrameLoader
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain.embeddings import
|
| 9 |
-
from langchain.llms import HuggingFaceHub
|
| 10 |
from langchain.vectorstores import Chroma
|
| 11 |
from langchain.chains import RetrievalQA
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
from trafilatura import fetch_url, extract
|
| 14 |
from trafilatura.spider import focused_crawler
|
| 15 |
from trafilatura.settings import use_config
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
|
| 20 |
def loading_website():
|
|
@@ -46,14 +47,28 @@ def url_changes(url, pages_to_visit, urls_to_scrape, repo_id):
|
|
| 46 |
texts = text_splitter.split_documents(documents)
|
| 47 |
print(f"documents splitted into {len(texts)} chunks")
|
| 48 |
|
| 49 |
-
embeddings =
|
| 50 |
|
| 51 |
persist_directory = './vector_db'
|
| 52 |
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
| 53 |
retriever = db.as_retriever()
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
global qa
|
| 59 |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import json
|
|
|
|
| 4 |
|
| 5 |
from langchain.document_loaders import DataFrameLoader
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
|
|
|
| 8 |
from langchain.vectorstores import Chroma
|
| 9 |
from langchain.chains import RetrievalQA
|
| 10 |
+
from langchain import HuggingFacePipeline
|
| 11 |
+
|
| 12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 13 |
|
| 14 |
from trafilatura import fetch_url, extract
|
| 15 |
from trafilatura.spider import focused_crawler
|
| 16 |
from trafilatura.settings import use_config
|
| 17 |
|
| 18 |
+
|
| 19 |
|
| 20 |
|
| 21 |
def loading_website():
|
|
|
|
| 47 |
texts = text_splitter.split_documents(documents)
|
| 48 |
print(f"documents splitted into {len(texts)} chunks")
|
| 49 |
|
| 50 |
+
embeddings = SentenceTransformerEmbeddings(model_name="jhgan/ko-sroberta-multitask")
|
| 51 |
|
| 52 |
persist_directory = './vector_db'
|
| 53 |
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
| 54 |
retriever = db.as_retriever()
|
| 55 |
|
| 56 |
+
MODEL = 'beomi/KoAlpaca-Polyglot-5.8B'
|
| 57 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 58 |
+
MODEL,
|
| 59 |
+
torch_dtype="auto",
|
| 60 |
+
)
|
| 61 |
+
model.eval()
|
| 62 |
+
pipe = pipeline(
|
| 63 |
+
'text-generation',
|
| 64 |
+
model=model,
|
| 65 |
+
tokenizer=MODEL,
|
| 66 |
+
max_length=512,
|
| 67 |
+
temperature=0,
|
| 68 |
+
top_p=0.95,
|
| 69 |
+
repetition_penalty=1.15
|
| 70 |
+
)
|
| 71 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 72 |
|
| 73 |
global qa
|
| 74 |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|