timmy0079 commited on
Commit
377a9ca
·
1 Parent(s): fbe1d5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -1,17 +1,20 @@
1
  import gradio as gr
2
 
3
- from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
4
- from PIL import Image
5
- import requests
6
  from matplotlib import gridspec
7
  import matplotlib.pyplot as plt
8
  import numpy as np
 
9
  import tensorflow as tf
 
10
 
11
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
12
- "nielsr/segformer-b0-finetuned-segments-sidewalk")
13
- model = SegformerForSemanticSegmentation.from_pretrained(
14
- "nielsr/segformer-b0-finetuned-segments-sidewalk")
 
 
 
 
15
 
16
  def ade_palette():
17
  """ADE20K palette that maps each class to RGB values."""
@@ -117,10 +120,14 @@ def sepia(input_img):
117
  return fig
118
 
119
  demo = gr.Interface(fn=sepia,
 
 
120
  inputs=gr.Image(),
121
  outputs=['plot'],
122
- examples=["Sidewalk_1.jpg", "Sidewalk_2.jpg", "Sidewalk_3.jpg"],
123
- allow_flagging='never')
 
 
124
 
125
 
126
  demo.launch()
 
1
  import gradio as gr
2
 
 
 
 
3
  from matplotlib import gridspec
4
  import matplotlib.pyplot as plt
5
  import numpy as np
6
+ from PIL import Image
7
  import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
 
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nielsr/segformer-b0-finetuned-segments-sidewalk",
12
+ from_pt=True
13
+ )
14
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
15
+ "nielsr/segformer-b0-finetuned-segments-sidewalk",
16
+ from_pt=True
17
+ )
18
 
19
  def ade_palette():
20
  """ADE20K palette that maps each class to RGB values."""
 
120
  return fig
121
 
122
  demo = gr.Interface(fn=sepia,
123
+ title="🚥Sidewalk Segmentation🏃‍️",
124
+ description="Image Segmentation for Sidewalks",
125
  inputs=gr.Image(),
126
  outputs=['plot'],
127
+ examples=["Sidewalk_1.jpg", "Sidewalk_2.jpg", "Sidewalk_3.jpg"]],
128
+ allow_flagging='never',
129
+ theme="gradio/soft",
130
+ live=True)
131
 
132
 
133
  demo.launch()