Spaces:
Sleeping
Sleeping
File size: 18,015 Bytes
9ad8418 8d295df c98df9e 8d295df 5fb6c43 8d295df 9ad8418 6fa0830 9ad8418 6fa0830 8d295df 9ad8418 8d295df c98df9e 5fb6c43 c98df9e 7782882 284fa00 7782882 c98df9e 7782882 284fa00 7782882 c98df9e 8d295df 7782882 8d295df c98df9e 7782882 284fa00 8d295df 284fa00 7782882 8d295df 284fa00 8d295df 7782882 9ad8418 7782882 9ad8418 284fa00 9ad8418 284fa00 9ad8418 284fa00 8d295df c98df9e 8d295df 9ad8418 284fa00 8d295df c231f99 c98df9e 9ad8418 284fa00 c98df9e 284fa00 7782882 9ad8418 284fa00 7782882 9ad8418 284fa00 7782882 9ad8418 7811e19 9ad8418 284fa00 7811e19 8d295df 284fa00 8d295df 9ad8418 284fa00 8d295df 284fa00 8d295df 7782882 8d295df 9ad8418 284fa00 8d295df c98df9e 7782882 c98df9e 93b5d9d 284fa00 8d295df 284fa00 93b5d9d 8d295df 7782882 8d295df 284fa00 8d295df 284fa00 8d295df 284fa00 8d295df 9ad8418 8d295df c98df9e 8d295df 9ad8418 8d295df c98df9e d1f422c c98df9e 7782882 7811e19 8d295df 284fa00 8d295df c231f99 8d295df 284fa00 8d295df 7782882 9ad8418 7782882 8d295df 284fa00 8d295df 7782882 284fa00 8d295df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import hashlib # <-- added
import os
import tempfile
from datetime import datetime
from pathlib import Path
import datasets
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
# ------------------------------------------------------------
# Cloud‑friendly Q/A preference rater for **Hugging Face Spaces**
# ------------------------------------------------------------
# This version swaps local CSV persistence for a tiny remote‑dataset
# workflow that works on Spaces:
# • Ratings are stored in (and loaded from) a lightweight **dataset
# repo** on the Hugging Face Hub – no local file system required.
# • The dataset repo is set via the `RATINGS_REPO` env‑var.
# • You must pass a write‑enabled token (env‑var `HF_TOKEN`) that has
# `write` permission on that dataset.
#
# Quick setup guide
# -----------------
# 1. Create a dataset repository to hold the ratings file, e.g.:
# https://huggingface.co/datasets/<org>/qa‑rater‑data
# 2. Inside **Space Settings ▸ Secrets**, add:
# • `RATINGS_REPO` → <org>/qa‑rater‑data
# • `HF_TOKEN` → a token with *Write* access to that repo
# 3. Add `huggingface‑hub` to your `requirements.txt` or
# `pip install huggingface‑hub` locally.
# 4. Deploy / push your updated Space – ratings will now persist in
# the dataset repo instead of the Space’s ephemeral storage.
# ------------------------------------------------------------
# -----------------------------------------------------------------------------
# Configuration – constants & styling
# -----------------------------------------------------------------------------
DATA_PATH = "human_judgement/selected_samples.json"
RATINGS_FILE = (
"human_judgement_irish_grammatical_test.csv" # Name *inside* the dataset repo
)
# RATINGS_REPO = os.getenv("RATINGS_REPO") # e.g. "org/qa‑rater‑data"
RATINGS_REPO = None
HF_TOKEN = os.getenv("HF_TOKEN") # write token for that repo
MAX_HEIGHT_PX = 400 # Max visible height for answer Markdown blocks
api = HfApi(token=HF_TOKEN) if HF_TOKEN else None
# -----------------------------------------------------------------------------
# Helper functions – data I/O
# -----------------------------------------------------------------------------
def user_bucket(user_id: str, buckets: int = 10) -> int:
"""Deterministically map user_id to 1..buckets."""
h = hashlib.sha256(user_id.encode("utf-8")).hexdigest()
return (int(h, 16) % buckets) + 1
def load_data(user_id: str) -> pd.DataFrame:
"""
Load the split of the dataset assigned to this user (1..10).
Tries several common split naming patterns; falls back to 'train'.
"""
"""
bucket = user_bucket(user_id)
patterns = [
# f"split{bucket}",
# f"split_{bucket}",
# f"fold{bucket}",
# f"fold_{bucket}",
# f"part{bucket}",
f"part_{bucket}",
# f"{bucket}",
]
for split_name in patterns:
try:
ds = datasets.load_dataset("tktung/irish_grammar_test", split=split_name)
df = pd.DataFrame(ds)
break
except Exception:
df = None
if df is None:
# Fallback
ds = datasets.load_dataset("tktung/irish_grammar_test", split="train")
df = pd.DataFrame(ds)
"""
ds = datasets.load_dataset("tktung/irish_grammar_test", split="train")
df = pd.DataFrame(ds)
required = {"question", "response1", "response2"}
if not required.issubset(df.columns):
raise ValueError(f"Dataset must contain columns: {', '.join(required)}")
return df
# ---------- Rating persistence helpers ---------------------------------------
def _download_remote_ratings() -> Path | None:
"""Try to fetch the current ratings file from the Hub; returns path or None."""
if not RATINGS_REPO:
return None
try:
return Path(
hf_hub_download(
repo_id=RATINGS_REPO,
filename=RATINGS_FILE,
repo_type="dataset",
token=HF_TOKEN,
cache_dir=tempfile.gettempdir(),
)
)
except Exception:
# File/repo may not exist yet – caller will create empty DF.
return None
def load_ratings() -> pd.DataFrame:
"""Return ratings DataFrame from remote repo (or empty if none)."""
remote = _download_remote_ratings()
if remote and remote.exists():
df = pd.read_csv(remote)
elif RATINGS_FILE and os.path.exists(RATINGS_FILE):
# Running locally (dev) – load local file if present.
df = pd.read_csv(RATINGS_FILE)
else:
df = pd.DataFrame(
columns=[
"user_id",
"user_bucket", # added
"row_index",
"choice",
"timestamp",
"proficiency",
"is_native",
"studied_second_level",
"studied_third_level",
"uses_for_work",
"usage_frequency",
]
)
# Backward compatibility: ensure new columns exist
required_cols = [
"proficiency",
"is_native",
"studied_second_level",
"studied_third_level",
"uses_for_work",
"usage_frequency",
"user_bucket", # added
]
for col in required_cols:
if col not in df.columns:
df[col] = pd.NA
return df
def _upload_remote_ratings(df: pd.DataFrame):
"""Upload CSV to the dataset repo with a commit per save."""
if not (RATINGS_REPO and api):
# Running locally (dev) – save to a temp file for inspection.
df.to_csv(RATINGS_FILE, index=False)
return
with tempfile.TemporaryDirectory() as tmpdir:
csv_path = Path(tmpdir) / RATINGS_FILE
csv_path.parent.mkdir(parents=True, exist_ok=True)
df.to_csv(csv_path, index=False)
api.upload_file(
path_or_fileobj=str(csv_path),
path_in_repo=RATINGS_FILE,
repo_id=RATINGS_REPO,
repo_type="dataset",
commit_message="Add/Update rating",
)
def save_rating(
user_id: str,
proficiency: str,
is_native: str,
studied_second_level: str,
studied_third_level: str,
uses_for_work: str,
usage_frequency: str,
row_index: int,
choice: int,
):
"""Append a rating (deduplicated) and push to the Hub (stores demographics)."""
ratings = load_ratings()
duplicate = (ratings.user_id == user_id) & (ratings.row_index == row_index)
if duplicate.any():
return
norm = lambda x: (x or "").strip().lower()
bucket = user_bucket(user_id) # added
new_entry = {
"user_id": user_id,
"user_bucket": bucket, # added
"proficiency": norm(proficiency),
"is_native": norm(is_native),
"studied_second_level": norm(studied_second_level),
"studied_third_level": norm(studied_third_level),
"uses_for_work": norm(uses_for_work),
"usage_frequency": norm(usage_frequency),
"row_index": row_index,
"choice": choice,
"timestamp": datetime.utcnow().isoformat(),
}
ratings = pd.concat([ratings, pd.DataFrame([new_entry])], ignore_index=True)
_upload_remote_ratings(ratings)
def get_next_unrated(df: pd.DataFrame, ratings: pd.DataFrame, user_id: str):
rated = ratings.loc[ratings.user_id == user_id, "row_index"].tolist()
unrated = df[~df.index.isin(rated)]
if unrated.empty:
return None
row = unrated.iloc[0]
return row.name, row.question, row.response1, row.response2
def user_progress(user_id: str, state_df) -> str:
"""Return progress string for this user."""
if not isinstance(state_df, pd.DataFrame):
return "Progress: 0 / 0"
ratings = load_ratings()
rated = ratings.loc[ratings.user_id == user_id, "row_index"].nunique()
total = len(state_df)
if total == 0:
return "Progress: 0 / 0"
return f"Progress: {rated} / {total} ({rated/total:.1%})"
# -----------------------------------------------------------------------------
# Gradio callbacks
# -----------------------------------------------------------------------------
def start_or_resume(
user_id: str,
proficiency: str,
is_native: str,
studied_second_level: str,
studied_third_level: str,
uses_for_work: str,
usage_frequency: str,
consent: bool,
state_df, # may be None before first load
):
# If dataset not yet loaded for this session, load user-specific split
if not isinstance(state_df, pd.DataFrame):
try:
state_df = load_data(user_id)
except Exception as e:
progress = user_progress(user_id, state_df)
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
state_df,
progress,
f"Dataset load failed: {e}",
)
progress = user_progress(user_id, state_df)
# ...existing validation blocks updated to include progress...
if not user_id.strip():
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
state_df,
progress,
"Please enter a non-empty identifier to begin.",
)
if proficiency not in {"expert", "fluent", "basic"}:
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
state_df,
progress,
"Please select your language proficiency.",
)
required_yes_no = {
is_native: "Is Native?",
studied_second_level: "Studied Irish At Second Level?",
studied_third_level: "Studied Irish At Third Level?",
uses_for_work: "Use Irish for work?",
}
for val, label in required_yes_no.items():
if val not in {"Yes", "No"}:
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
state_df,
progress,
f"Please answer: {label}",
)
if usage_frequency not in {"daily", "weekly", "monthly", "yearly"}:
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
state_df,
progress,
"Please select usage frequency.",
)
if not consent:
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
state_df,
progress,
"Please provide consent to proceed.",
)
ratings = load_ratings()
record = get_next_unrated(state_df, ratings, user_id)
if record is None:
progress = user_progress(user_id, state_df)
return (
gr.update(value=user_id, visible=True),
gr.update(visible=False),
gr.update(visible=False),
"",
"",
"",
"",
state_df,
progress,
"🎉 You have evaluated every item – thank you!",
)
idx, q, a1, a2 = record
progress = user_progress(user_id, state_df)
return (
gr.update(value=user_id, visible=True),
gr.update(visible=True),
gr.update(visible=True),
"**" + q + "**",
a1,
a2,
str(idx),
state_df,
progress,
"",
)
def submit_preference(
user_id: str,
proficiency: str,
is_native: str,
studied_second_level: str,
studied_third_level: str,
uses_for_work: str,
usage_frequency: str,
row_idx_str: str,
choice: str,
state_df,
):
if choice not in {"Sentence 1", "Sentence 2"}:
progress = user_progress(user_id, state_df)
return (
"",
"",
"",
"",
progress,
"Please choose either Sentence 1 or Sentence 2 before submitting.",
)
row_idx = int(row_idx_str)
save_rating(
user_id,
proficiency,
is_native,
studied_second_level,
studied_third_level,
uses_for_work,
usage_frequency,
row_idx,
1 if choice == "Sentence 1" else 2,
)
ratings = load_ratings()
record = get_next_unrated(state_df, ratings, user_id)
progress = user_progress(user_id, state_df)
if record is None:
return "", "", "", "", progress, "🎉 You have evaluated every item – thank you!"
idx, q, a1, a2 = record
return "**" + q + "**", a1, a2, str(idx), progress, ""
# -----------------------------------------------------------------------------
# Build Gradio interface
# -----------------------------------------------------------------------------
def build_demo():
# Removed upfront dataset load; defer until user supplies ID
# df = load_data()
# CSS to constrain very tall answers
overflow_css = f"""
<style>
.answerbox {{
max-height: {MAX_HEIGHT_PX}px;
overflow-y: auto;
white-space: pre-wrap;
}}
</style>
"""
with gr.Blocks(title="Question/Answer Preference Rater") as demo:
gr.HTML(overflow_css)
gr.Markdown(
"""# Irish Grammatical Test
Enter your identifier below to start or resume. Each sample is a pair of two sentences that varied by a grammatical feature. You should choose the one that you think is correct. Your progress is saved automatically so you can return at any time using the same identifier."""
)
state_df = gr.State(None) # will be filled after hashing user_id
state_row_idx = gr.State("")
# Identifier input
id_input = gr.Textbox(label="User Identifier", placeholder="e.g. alice")
proficiency_radio = gr.Radio(
["expert", "fluent", "basic"],
label="Language proficiency",
info="Select your Irish language proficiency level.",
)
is_native_radio = gr.Radio(
["Yes", "No"], label="Is Native?", info="Are you a native Irish speaker?"
)
studied_second_radio = gr.Radio(
["Yes", "No"],
label="Studied Irish At Second Level?",
info="Did you study Irish in school?",
)
studied_third_radio = gr.Radio(
["Yes", "No"],
label="Studied Irish At Third Level?",
info="Did you study Irish at university/third level?",
)
uses_for_work_radio = gr.Radio(
["Yes", "No"],
label="Use Irish for work?",
info="Do you use Irish in your job?",
)
usage_frequency_radio = gr.Radio(
["daily", "weekly", "monthly", "yearly"],
label="How often do you use Irish?",
)
consent_checkbox = gr.Checkbox( # <-- added
label="I consent to the use of my responses for research purposes."
)
start_btn = gr.Button("Start / Resume")
info_md = gr.Markdown("")
progress_md = gr.Markdown("Progress: 0 / 0") # <-- added
# Evaluation widgets
with gr.Column(visible=False) as eval_col:
question_md = gr.Markdown("")
with gr.Row():
answer1_md = gr.Markdown(label="Sentence A", elem_classes=["answerbox"])
answer2_md = gr.Markdown(label="Sentence B", elem_classes=["answerbox"])
choice_radio = gr.Radio(
["Sentence 1", "Sentence 2"],
label="Which sentence is more grammatically correct?",
)
submit_btn = gr.Button("Submit Preference", visible=False)
# Callbacks wiring (added progress_md in outputs)
start_btn.click(
fn=start_or_resume,
inputs=[
id_input,
proficiency_radio,
is_native_radio,
studied_second_radio,
studied_third_radio,
uses_for_work_radio,
usage_frequency_radio,
consent_checkbox,
state_df,
],
outputs=[
id_input,
eval_col,
submit_btn,
question_md,
answer1_md,
answer2_md,
state_row_idx,
state_df,
progress_md, # <-- added
info_md,
],
)
submit_btn.click(
fn=submit_preference,
inputs=[
id_input,
proficiency_radio,
is_native_radio,
studied_second_radio,
studied_third_radio,
uses_for_work_radio,
usage_frequency_radio,
state_row_idx,
choice_radio,
state_df,
],
outputs=[
question_md,
answer1_md,
answer2_md,
state_row_idx,
progress_md, # <-- added
info_md,
],
)
return demo
if __name__ == "__main__":
build_demo().launch()
|