cojournalist-data / mcp_integration.py
Tom
Add Mistral AI + OpenParlData MCP chatbot
fd111d2
raw
history blame
7.72 kB
"""
MCP Integration for OpenParlData
Provides a wrapper for connecting to the OpenParlData MCP server
and executing tools from the Gradio app.
"""
import os
import sys
import json
import asyncio
from typing import Optional, Dict, Any, List
from pathlib import Path
# Add mcp directory to path
mcp_dir = Path(__file__).parent / "mcp"
sys.path.insert(0, str(mcp_dir))
from mcp.client.session import ClientSession
from mcp.client.stdio import stdio_client, StdioServerParameters
class OpenParlDataClient:
"""Client for interacting with OpenParlData MCP server."""
def __init__(self):
self.session: Optional[ClientSession] = None
self.available_tools: List[Dict[str, Any]] = []
async def connect(self):
"""Connect to the MCP server."""
# Get the path to the MCP server script
server_script = Path(__file__).parent / "mcp" / "openparldata_mcp.py"
if not server_script.exists():
raise FileNotFoundError(f"MCP server script not found at {server_script}")
# Server parameters for stdio connection
server_params = StdioServerParameters(
command=sys.executable, # Python interpreter
args=[str(server_script)],
env=None
)
# Create stdio client context
self.stdio_context = stdio_client(server_params)
read, write = await self.stdio_context.__aenter__()
# Create session
self.session = ClientSession(read, write)
await self.session.__aenter__()
# Initialize and get available tools
await self.session.initialize()
# List available tools
tools_result = await self.session.list_tools()
self.available_tools = [
{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
}
for tool in tools_result.tools
]
return self.available_tools
async def disconnect(self):
"""Disconnect from the MCP server."""
if self.session:
await self.session.__aexit__(None, None, None)
if hasattr(self, 'stdio_context'):
await self.stdio_context.__aexit__(None, None, None)
async def call_tool(self, tool_name: str, arguments: Dict[str, Any]) -> str:
"""
Call an MCP tool with given arguments.
Args:
tool_name: Name of the tool to call
arguments: Dictionary of arguments for the tool
Returns:
Tool response as string
"""
if not self.session:
raise RuntimeError("Not connected to MCP server. Call connect() first.")
# Wrap arguments in 'params' key as expected by MCP server
tool_arguments = {"params": arguments}
# Call the tool
result = await self.session.call_tool(tool_name, arguments=tool_arguments)
# Extract text content from result
if result.content:
# MCP returns list of content blocks
text_parts = []
for content in result.content:
if hasattr(content, 'text'):
text_parts.append(content.text)
elif isinstance(content, dict) and 'text' in content:
text_parts.append(content['text'])
return "\n".join(text_parts)
return "No response from tool"
def get_tool_info(self) -> List[Dict[str, Any]]:
"""Get information about available tools."""
return self.available_tools
# Convenience functions for common operations
async def search_parliamentarians(
query: Optional[str] = None,
canton: Optional[str] = None,
party: Optional[str] = None,
language: str = "en",
limit: int = 20,
show_debug: bool = False
) -> tuple[str, Optional[str]]:
"""
Search for parliamentarians.
Returns:
Tuple of (response_text, debug_info)
"""
client = OpenParlDataClient()
try:
await client.connect()
arguments = {
"language": language,
"limit": limit,
"response_format": "markdown"
}
if query:
arguments["query"] = query
if canton:
arguments["canton"] = canton
if party:
arguments["party"] = party
debug_info = None
if show_debug:
debug_info = f"**Tool:** openparldata_search_parliamentarians\n**Arguments:** ```json\n{json.dumps(arguments, indent=2)}\n```"
response = await client.call_tool("openparldata_search_parliamentarians", arguments)
return response, debug_info
finally:
await client.disconnect()
async def search_votes(
query: Optional[str] = None,
date_from: Optional[str] = None,
date_to: Optional[str] = None,
language: str = "en",
limit: int = 20,
show_debug: bool = False
) -> tuple[str, Optional[str]]:
"""
Search for parliamentary votes.
Returns:
Tuple of (response_text, debug_info)
"""
client = OpenParlDataClient()
try:
await client.connect()
arguments = {
"language": language,
"limit": limit,
"response_format": "markdown"
}
if query:
arguments["query"] = query
if date_from:
arguments["date_from"] = date_from
if date_to:
arguments["date_to"] = date_to
debug_info = None
if show_debug:
debug_info = f"**Tool:** openparldata_search_votes\n**Arguments:** ```json\n{json.dumps(arguments, indent=2)}\n```"
response = await client.call_tool("openparldata_search_votes", arguments)
return response, debug_info
finally:
await client.disconnect()
async def search_motions(
query: Optional[str] = None,
status: Optional[str] = None,
language: str = "en",
limit: int = 20,
show_debug: bool = False
) -> tuple[str, Optional[str]]:
"""
Search for motions and proposals.
Returns:
Tuple of (response_text, debug_info)
"""
client = OpenParlDataClient()
try:
await client.connect()
arguments = {
"language": language,
"limit": limit,
"response_format": "markdown"
}
if query:
arguments["query"] = query
if status:
arguments["status"] = status
debug_info = None
if show_debug:
debug_info = f"**Tool:** openparldata_search_motions\n**Arguments:** ```json\n{json.dumps(arguments, indent=2)}\n```"
response = await client.call_tool("openparldata_search_motions", arguments)
return response, debug_info
finally:
await client.disconnect()
async def execute_mcp_query(
user_query: str,
tool_name: str,
arguments: Dict[str, Any],
show_debug: bool = False
) -> tuple[str, Optional[str]]:
"""
Execute any MCP tool query.
Args:
user_query: The original user question (for context)
tool_name: Name of the MCP tool to call
arguments: Arguments for the tool
show_debug: Whether to return debug information
Returns:
Tuple of (response_text, debug_info)
"""
client = OpenParlDataClient()
try:
await client.connect()
debug_info = None
if show_debug:
debug_info = f"**User Query:** {user_query}\n\n**Tool:** {tool_name}\n**Arguments:** ```json\n{json.dumps(arguments, indent=2)}\n```"
response = await client.call_tool(tool_name, arguments)
return response, debug_info
finally:
await client.disconnect()