Spaces:
Running
Running
File size: 17,923 Bytes
2d671a2 7114af0 2d671a2 9db289b 7114af0 2d671a2 7114af0 2d671a2 9db289b 2d671a2 9db289b 2d671a2 7114af0 9db289b 7114af0 2d671a2 f0f2e70 7114af0 2d671a2 7114af0 2d671a2 7114af0 2d671a2 7114af0 9db289b 7114af0 9db289b 7114af0 9db289b 7114af0 9db289b 7114af0 9db289b 7114af0 9db289b 7114af0 9db289b 2d671a2 7114af0 9db289b 7114af0 9db289b 7114af0 2d671a2 7114af0 2d671a2 7114af0 9db289b 2d671a2 7114af0 2d671a2 7114af0 2d671a2 7114af0 2d671a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
"""
Viz LLM - Gradio App
A RAG-powered assistant for data visualization guidance, powered by Jina-CLIP-v2
embeddings and research from the field of information graphics.
Now with Datawrapper integration for chart generation!
"""
import os
import io
import asyncio
import pandas as pd
import gradio as gr
from dotenv import load_dotenv
from src.rag_pipeline import create_pipeline
from src.datawrapper_client import create_and_publish_chart, get_iframe_html
from datetime import datetime, timedelta
from collections import defaultdict
from src.vanna import VannaComponent
# Load environment variables
load_dotenv()
# Rate limiting: Track requests per user (IP-based)
# Format: {ip: [(timestamp1, timestamp2, ...)]}
rate_limit_tracker = defaultdict(list)
DAILY_LIMIT = 20
# Initialize the RAG pipeline
print("Initializing Graphics Design Pipeline...")
try:
pipeline = create_pipeline(
retrieval_k=5,
model=os.getenv("LLM_MODEL", "meta-llama/Llama-3.1-8B-Instruct"),
temperature=float(os.getenv("LLM_TEMPERATURE", "0.2"))
)
print("✓ Pipeline initialized successfully")
except Exception as e:
print(f"✗ Error initializing pipeline: {e}")
raise
# Initialize Vanna
print("Initializing Vanna...")
try:
vanna = VannaComponent(
hf_model="Qwen/Qwen3-VL-30B-A3B-Instruct",
hf_token=os.getenv("HF_TOKEN_VANNA"),
hf_provider="novita",
connection_string=os.getenv("SUPABASE_CONNECTION")
)
print("✓ Vanna initialized successfully")
except Exception as e:
print(f"✗ Error initializing Vanna: {e}")
raise
def check_rate_limit(request: gr.Request) -> tuple[bool, int]:
"""Check if user has exceeded rate limit"""
if request is None:
return True, DAILY_LIMIT # Allow if no request object
user_id = request.client.host
now = datetime.now()
cutoff = now - timedelta(days=1)
# Remove old requests (older than 24 hours)
rate_limit_tracker[user_id] = [
ts for ts in rate_limit_tracker[user_id] if ts > cutoff
]
remaining = DAILY_LIMIT - len(rate_limit_tracker[user_id])
if remaining <= 0:
return False, 0
# Add current request
rate_limit_tracker[user_id].append(now)
return True, remaining - 1
def recommend_stream(message: str, history: list, request: gr.Request):
"""
Streaming version of design recommendation function
Args:
message: User's design query
history: Chat history
request: Gradio request object for rate limiting
Yields:
Response chunks
"""
# Check rate limit
allowed, remaining = check_rate_limit(request)
if not allowed:
yield "⚠️ **Rate limit exceeded.** You've reached the maximum of 20 queries per day. Please try again in 24 hours."
return
try:
response_stream = pipeline.generate_recommendations(message, stream=True)
full_response = ""
for chunk in response_stream:
full_response += chunk
yield full_response
# Add rate limit info at the end
if remaining <= 5:
yield full_response + f"\n\n---\n*You have {remaining} queries remaining today.*"
except Exception as e:
yield f"Error generating response: {str(e)}\n\nPlease check your environment variables (HF_TOKEN, SUPABASE_URL, SUPABASE_KEY) and try again."
def generate_chart_from_csv(csv_file, user_prompt):
"""
Generate a Datawrapper chart from uploaded CSV and user prompt.
Args:
csv_file: Uploaded CSV file
user_prompt: User's description of the chart
Returns:
HTML string with iframe or error message
"""
if not csv_file:
return "<div style='padding: 50px; text-align: center;'>Please upload a CSV file to generate a chart.</div>"
if not user_prompt or user_prompt.strip() == "":
return "<div style='padding: 50px; text-align: center;'>Please describe what chart you want to create.</div>"
try:
# Show loading message
loading_html = """
<div style='padding: 100px; text-align: center;'>
<h3>🎨 Creating your chart...</h3>
<p>Analyzing your data and selecting the best visualization...</p>
</div>
"""
# Read CSV file
df = pd.read_csv(csv_file)
# Create and publish chart (async function, need to run in event loop)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(
create_and_publish_chart(df, user_prompt, pipeline)
)
loop.close()
if result.get("success"):
# Get the iframe HTML
iframe_html = get_iframe_html(result.get('public_url'), height=500)
# Create HTML with iframe, reasoning, and edit button
chart_html = f"""
<div style='padding: 20px;'>
<!-- Chart iframe -->
<div style='margin-bottom: 20px;'>
{iframe_html}
</div>
<!-- Why this chart? -->
<div style='background: #f9f9f9; padding: 15px; border-radius: 5px; margin-bottom: 15px;'>
<strong>Why this chart?</strong><br>
<p style='margin: 10px 0 0 0;'>{result['reasoning']}</p>
</div>
<!-- Edit button -->
<div>
<a href="{result['edit_url']}" target="_blank"
style="display: inline-block; padding: 12px 24px; background: #1976d2; color: white;
text-decoration: none; border-radius: 5px; font-weight: bold;">
✏️ Open in Datawrapper
</a>
</div>
</div>
"""
return chart_html
else:
error_msg = result.get("error", "Unknown error")
return f"""
<div style='padding: 50px; text-align: center; color: red;'>
<h3>❌ Chart Generation Failed</h3>
<p>{error_msg}</p>
<p style='font-size: 0.9em; color: #666;'>Please check your CSV format and try again.</p>
</div>
"""
except Exception as e:
return f"""
<div style='padding: 50px; text-align: center; color: red;'>
<h3>❌ Error</h3>
<p>{str(e)}</p>
<p style='font-size: 0.9em; color: #666;'>Please ensure your CSV is properly formatted and try again.</p>
</div>
"""
def csv_to_cards_html(csv_text: str) -> str:
"""
Transforme le CSV brut retourné par Vanna en cartes HTML.
"""
try:
df = pd.read_csv(io.StringIO(csv_text.strip()))
if df.empty:
return "<div style='padding: 50px; text-align: center;'>Aucune donnée trouvée.</div>"
cards_html = ""
for _, row in df.iterrows():
title = row.get("title", "Sans titre")
source_url = row.get("source_url", "#")
author = row.get("author", "Inconnu")
published_date = row.get("published_date", "")
if not published_date == "nan":
published_date = ""
image_url = row.get("image_url", "")
if not image_url == "nan":
image_url = "https://fpoimg.com/800x600?text=Image+not+found"
cards_html += f"""
<div style="background: white; border-radius: 10px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);
overflow: hidden; margin: 10px; width: 320px; flex: 0 0 auto;">
<img src="{image_url}" alt="{title}" style="width:100%; height:180px; object-fit:cover;">
<div style="padding: 12px 16px;">
<h3 style="margin:0; font-size:1.1em; color:#222;">{title}</h3>
<p style="margin:6px 0; color:#555; font-size:0.9em;">{author}</p>
<p style="margin:0; color:#999; font-size:0.8em;">{published_date}</p>
<a href="{source_url}" target="_blank"
style="display:inline-block; margin-top:8px; font-size:0.9em; color:#1976d2; text-decoration:none;">
🔗 Voir la source
</a>
</div>
</div>
"""
html = f"""
<div style="display:flex; flex-wrap:wrap; justify-content:center; padding:20px;">
{cards_html}
</div>
"""
return html
except Exception as e:
return f"<div style='padding: 50px; text-align: center; color:red;'>Erreur lors du parsing du CSV : {e}</div>"
async def search_inspiration_from_database(user_prompt):
"""
Search inspiration posts from user prompt in database.
Args:
user_prompt: User's description of the inspiration query
Returns:
HTML string displaying cards or an error message
"""
if not user_prompt or user_prompt.strip() == "":
return """
<div style='padding: 50px; text-align: center;'>
Please describe what kind of inspiration you want to search for.
</div>
"""
try:
response = await vanna.ask(user_prompt)
print("response :", repr(response))
clean_response = response.strip()
if clean_response.startswith("⚠️") or "Aucun CSV détecté" in clean_response:
return f"""
<div style='padding: 50px; text-align: center; color: #d9534f;'>
<h3>❌ No valid data found</h3>
<p>The AI couldn't generate any data for this request. Try being more specific — for example:
<em>"Show me spotlights from 2020 about design"</em>.</p>
</div>
"""
csv_text = (
clean_response
.strip("```")
.replace("csv", "")
.replace("CSV", "")
)
if "," not in csv_text:
return f"""
<div style='padding: 50px; text-align: center; color: #d9534f;'>
<h3>❌ No valid CSV detected</h3>
<p>The model didn't return any structured data. Try rephrasing your query to be more precise.</p>
</div>
"""
cards_html = csv_to_cards_html(csv_text)
return cards_html
except Exception as e:
return f"""
<div style='padding: 50px; text-align: center; color: red;'>
<h3>❌ Error</h3>
<p>{str(e)}</p>
<p style='font-size: 0.9em; color: #666;'>Please try again.</p>
</div>
"""
# Minimal CSS to fix UI artifacts and style the mode selector
custom_css = """
/* Hide retry/undo buttons that appear as artifacts */
.chatbot button[aria-label="Retry"],
.chatbot button[aria-label="Undo"] {
display: none !important;
}
/* Remove overflow-y scroll from textarea */
textarea[data-testid="textbox"] {
overflow-y: hidden !important;
}
/* Mode selector buttons */
.mode-button {
font-size: 1.1em;
padding: 12px 24px;
margin: 5px;
}
"""
# Create Gradio interface with dual-mode layout
with gr.Blocks(
title="Viz LLM",
css=custom_css
) as demo:
gr.Markdown("""
# 📊 Viz LLM
Get design recommendations or generate charts with AI-powered data visualization assistance.
""")
# Mode selector buttons
with gr.Row():
ideation_btn = gr.Button("💡 Ideation Mode", variant="primary", elem_classes="mode-button")
chart_gen_btn = gr.Button("📊 Chart Generation Mode", variant="secondary", elem_classes="mode-button")
inspiration_btn = gr.Button("✨ Inspiration Mode", variant="secondary", elem_classes="mode-button")
# Ideation Mode: Chat interface (shown by default, wrapped in Column)
with gr.Column(visible=True) as ideation_container:
ideation_interface = gr.ChatInterface(
fn=recommend_stream,
type="messages",
examples=[
"What's the best chart type for showing trends over time?",
"How do I create an effective infographic for complex data?",
"What are best practices for data visualization accessibility?",
"How should I design a dashboard for storytelling?",
"What visualization works best for comparing categories?"
],
cache_examples=False,
api_name="recommend"
)
# Chart Generation Mode: Chart controls and output (hidden by default)
with gr.Column(visible=False) as chart_gen_container:
csv_upload = gr.File(
label="📁 Upload CSV File",
file_types=[".csv"],
type="filepath"
)
chart_prompt_input = gr.Textbox(
label="Describe your chart",
placeholder="E.g., 'Show sales trends over time' or 'Compare revenue by category'",
lines=2
)
generate_chart_btn = gr.Button("Generate Chart", variant="primary", size="lg")
chart_output = gr.HTML(
value="<div style='text-align:center; padding:100px; color: #666;'>Upload a CSV file and describe your visualization above, then click Generate Chart.</div>",
label="Generated Chart"
)
# Inspiration Mode:
with gr.Column(visible=False) as inspiration_container:
with gr.Row():
inspiration_prompt_input = gr.Textbox(
placeholder="Ask for an inspiration...",
show_label=False,
scale=4,
container=False
)
inspiration_search_btn = gr.Button("🔍 Search", variant="primary", scale=1)
inspiration_cards_html = gr.HTML("")
# Mode switching functions
def switch_to_ideation():
return [
gr.update(variant="primary"), # ideation_btn
gr.update(variant="secondary"), # chart_gen_btn
gr.update(variant="secondary"), # inspiration_btn
gr.update(visible=True), # ideation_container
gr.update(visible=False), # chart_gen_container
gr.update(visible=False), # inspiration_container
]
def switch_to_chart_gen():
return [
gr.update(variant="secondary"), # ideation_btn
gr.update(variant="primary"), # chart_gen_btn
gr.update(variant="secondary"), # inspiration_btn
gr.update(visible=False), # ideation_container
gr.update(visible=True), # chart_gen_container
gr.update(visible=False), # inspiration_container
]
def switch_to_inspiration():
return [
gr.update(variant="secondary"), # ideation_btn
gr.update(variant="secondary"), # chart_gen_btn
gr.update(variant="primary"), # inspiration_btn
gr.update(visible=False), # ideation_container
gr.update(visible=False), # chart_gen_container
gr.update(visible=True), # inspiration_container
]
# Wire up mode switching
ideation_btn.click(
fn=switch_to_ideation,
inputs=[],
outputs=[ideation_btn, chart_gen_btn, inspiration_btn, ideation_container, chart_gen_container, inspiration_container]
)
chart_gen_btn.click(
fn=switch_to_chart_gen,
inputs=[],
outputs=[ideation_btn, chart_gen_btn, inspiration_btn, ideation_container, chart_gen_container, inspiration_container]
)
inspiration_btn.click(
fn=switch_to_inspiration,
inputs=[],
outputs=[ideation_btn, chart_gen_btn, inspiration_btn, ideation_container, chart_gen_container, inspiration_container]
)
# Generate chart when button is clicked
generate_chart_btn.click(
fn=generate_chart_from_csv,
inputs=[csv_upload, chart_prompt_input],
outputs=[chart_output]
)
# Search inspiration when button is clicked
inspiration_search_btn.click(
fn=search_inspiration_from_database,
inputs=[inspiration_prompt_input],
outputs=[inspiration_cards_html]
)
# Knowledge base section (below both interfaces)
gr.Markdown("""
### About Viz LLM
**Ideation Mode:** Get design recommendations based on research papers, design principles, and examples from the field of information graphics and data visualization.
**Chart Generation Mode:** Upload your CSV data and describe your visualization goal. The AI will analyze your data, select the optimal chart type, and generate a publication-ready chart using Datawrapper.
**Inspiration Mode:** Coming soon.
**Credits:** Special thanks to the researchers whose work informed this model: Robert Kosara, Edward Segel, Jeffrey Heer, Matthew Conlen, John Maeda, Kennedy Elliott, Scott McCloud, and many others.
---
**Usage Limits:** This service is limited to 20 queries per day per user to manage costs. Responses are optimized for English.
<div style="text-align: center; margin-top: 20px; opacity: 0.6; font-size: 0.9em;">
Embeddings: Jina-CLIP-v2 | Charts: Datawrapper API
</div>
""")
# Launch configuration
if __name__ == "__main__":
# Check for required environment variables
required_vars = ["SUPABASE_URL", "SUPABASE_KEY", "HF_TOKEN", "DATAWRAPPER_ACCESS_TOKEN"]
missing_vars = [var for var in required_vars if not os.getenv(var)]
if missing_vars:
print(f"⚠️ Warning: Missing environment variables: {', '.join(missing_vars)}")
print("Please set these in your .env file or as environment variables")
if "DATAWRAPPER_ACCESS_TOKEN" in missing_vars:
print("Note: DATAWRAPPER_ACCESS_TOKEN is required for chart generation mode")
# Launch the app
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=True
)
|