Spaces:
Running
Running
File size: 11,273 Bytes
7114af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
"""
Datawrapper Chart Generation Client
Integrates RAG pipeline with Datawrapper API for intelligent chart creation.
"""
import json
import os
from typing import Optional, Tuple
import pandas as pd
from .prompts import (
CHART_SELECTION_SYSTEM_PROMPT,
get_chart_selection_prompt,
get_chart_styling_prompt
)
from .llm_client import create_llm_client
from .rag_pipeline import GraphicsDesignPipeline
# Import Datawrapper MCP handlers directly
from datawrapper_mcp.handlers.create import create_chart as mcp_create_chart
from datawrapper_mcp.handlers.publish import publish_chart as mcp_publish_chart
from datawrapper_mcp.handlers.retrieve import get_chart_info as mcp_get_chart_info
def get_data_summary(df: pd.DataFrame) -> str:
"""
Generate a summary of the DataFrame structure and content.
Args:
df: Input DataFrame
Returns:
String summary of data characteristics
"""
summary_parts = []
# Basic info
summary_parts.append(f"Rows: {len(df)}, Columns: {len(df.columns)}")
summary_parts.append(f"Column names: {', '.join(df.columns.tolist())}")
# Column types
numeric_cols = df.select_dtypes(include=['number']).columns.tolist()
text_cols = df.select_dtypes(include=['object']).columns.tolist()
date_cols = df.select_dtypes(include=['datetime']).columns.tolist()
if numeric_cols:
summary_parts.append(f"Numeric columns: {', '.join(numeric_cols)}")
if text_cols:
summary_parts.append(f"Text columns: {', '.join(text_cols)}")
if date_cols:
summary_parts.append(f"Date columns: {', '.join(date_cols)}")
# Data preview (first 3 rows)
summary_parts.append(f"\nData preview:\n{df.head(3).to_string()}")
return "\n".join(summary_parts)
def analyze_csv_for_chart_type(
df: pd.DataFrame,
user_prompt: str,
rag_pipeline: GraphicsDesignPipeline
) -> Tuple[str, str]:
"""
Use RAG and LLM to determine the best chart type for the data.
Args:
df: Input DataFrame
user_prompt: User's description of what they want to visualize
rag_pipeline: RAG pipeline for retrieving best practices
Returns:
Tuple of (chart_type, reasoning)
"""
# Get data summary
data_summary = get_data_summary(df)
# Query RAG for chart selection best practices
rag_query = f"chart type selection for {user_prompt}"
relevant_docs = rag_pipeline.retrieve_documents(rag_query, k=3)
rag_context = rag_pipeline.vectorstore.format_documents_for_context(relevant_docs)
# Generate chart type recommendation using LLM
chart_prompt = get_chart_selection_prompt()
full_prompt = chart_prompt.format(
user_prompt=user_prompt,
data_summary=data_summary,
rag_context=rag_context
)
llm_client = create_llm_client(
model=os.getenv("LLM_MODEL", "meta-llama/Llama-3.1-8B-Instruct"),
temperature=0.3, # Lower temperature for more deterministic chart selection
max_tokens=500
)
response = llm_client.generate(
prompt=full_prompt,
system_prompt=CHART_SELECTION_SYSTEM_PROMPT
)
# Parse JSON response
try:
# Extract JSON from response (handle markdown code blocks)
response_clean = response.strip()
if "```json" in response_clean:
response_clean = response_clean.split("```json")[1].split("```")[0].strip()
elif "```" in response_clean:
response_clean = response_clean.split("```")[1].split("```")[0].strip()
result = json.loads(response_clean)
chart_type = result.get("chart_type", "line")
reasoning = result.get("reasoning", "")
# Validate chart type
valid_types = ["bar", "line", "area", "scatter", "column", "stacked_bar", "arrow", "multiple_column"]
if chart_type not in valid_types:
chart_type = "line" # Default fallback
return chart_type, reasoning
except Exception as e:
print(f"Error parsing chart type response: {e}")
print(f"Response was: {response}")
# Default to line chart
return "line", "Using default line chart due to parsing error"
def generate_chart_config(
chart_type: str,
df: pd.DataFrame,
user_prompt: str,
rag_pipeline: GraphicsDesignPipeline
) -> dict:
"""
Generate Datawrapper chart configuration using RAG and LLM.
Args:
chart_type: Type of chart to create
df: Input DataFrame
user_prompt: User's visualization request
rag_pipeline: RAG pipeline for retrieving design best practices
Returns:
Dictionary with chart configuration
"""
# Get data summary
data_summary = get_data_summary(df)
# Query RAG for styling and design best practices
rag_query = f"chart design best practices colors accessibility {chart_type}"
relevant_docs = rag_pipeline.retrieve_documents(rag_query, k=3)
rag_context = rag_pipeline.vectorstore.format_documents_for_context(relevant_docs)
# Generate chart configuration using LLM
styling_prompt = get_chart_styling_prompt()
full_prompt = styling_prompt.format(
chart_type=chart_type,
user_prompt=user_prompt,
data_summary=data_summary,
rag_context=rag_context
)
llm_client = create_llm_client(
model=os.getenv("LLM_MODEL", "meta-llama/Llama-3.1-8B-Instruct"),
temperature=0.5,
max_tokens=800
)
response = llm_client.generate(
prompt=full_prompt,
system_prompt="You are a data visualization expert. Generate valid JSON configuration for Datawrapper charts."
)
# Parse JSON response
try:
# Extract JSON from response
response_clean = response.strip()
if "```json" in response_clean:
response_clean = response_clean.split("```json")[1].split("```")[0].strip()
elif "```" in response_clean:
response_clean = response_clean.split("```")[1].split("```")[0].strip()
config = json.loads(response_clean)
# Ensure basic required fields
if "title" not in config:
config["title"] = user_prompt[:100] # Use prompt as fallback title
return config
except Exception as e:
print(f"Error parsing chart config: {e}")
print(f"Response was: {response}")
# Return minimal config
return {
"title": user_prompt[:100] if user_prompt else "Data Visualization",
"source_name": "User Data"
}
async def create_and_publish_chart(
df: pd.DataFrame,
user_prompt: str,
rag_pipeline: GraphicsDesignPipeline,
api_token: Optional[str] = None
) -> dict:
"""
Complete workflow: analyze data, select chart type, create and publish chart.
Args:
df: Input DataFrame
user_prompt: User's visualization request
rag_pipeline: RAG pipeline instance
api_token: Datawrapper API token (defaults to env var)
Returns:
Dictionary with chart info including iframe URL
"""
if api_token is None:
api_token = os.getenv("DATAWRAPPER_ACCESS_TOKEN")
if not api_token:
raise ValueError("DATAWRAPPER_ACCESS_TOKEN not found in environment")
try:
# Step 1: Analyze data and select chart type
chart_type, reasoning = analyze_csv_for_chart_type(df, user_prompt, rag_pipeline)
# Step 2: Generate chart configuration
chart_config = generate_chart_config(chart_type, df, user_prompt, rag_pipeline)
# Step 3: Convert DataFrame to list of dicts for Datawrapper
data_list = df.to_dict('records')
# Step 4: Create chart using MCP handler
create_args = {
"data": data_list,
"chart_type": chart_type,
"chart_config": chart_config
}
create_result = await mcp_create_chart(create_args)
if not create_result or len(create_result) == 0:
raise ValueError("Empty response from chart creation")
result_text = create_result[0].text
if not result_text or result_text.strip() == "":
raise ValueError("Empty text in chart creation response")
result_data = json.loads(result_text)
chart_id = result_data.get("chart_id")
if not chart_id:
raise ValueError(f"Failed to get chart_id from creation response. Response was: {result_data}")
# Step 5: Try to publish chart using MCP handler
publish_success = False
publish_message = ""
try:
publish_args = {"chart_id": chart_id}
publish_result = await mcp_publish_chart(publish_args)
publish_text = publish_result[0].text
publish_data = json.loads(publish_text)
publish_success = True
publish_message = publish_data.get("message", "Published successfully")
except Exception as publish_error:
publish_message = f"Publish failed: {str(publish_error)}"
# Step 6: Get full chart info using MCP handler
chart_info_args = {"chart_id": chart_id}
chart_info_result = await mcp_get_chart_info(chart_info_args)
chart_info_text = chart_info_result[0].text
chart_info = json.loads(chart_info_text)
# Return complete info
return {
"success": True,
"chart_id": chart_id,
"chart_type": chart_type,
"reasoning": reasoning,
"public_url": chart_info.get("public_url"),
"edit_url": chart_info.get("edit_url"),
"published": publish_success,
"publish_message": publish_message,
"title": chart_config.get("title", "Chart")
}
except json.JSONDecodeError as e:
error_msg = f"JSON parsing error: {str(e)}"
print(f"Error in chart creation: {error_msg}")
print(f"Failed to parse: {result_text if 'result_text' in locals() else 'N/A'}")
return {
"success": False,
"error": error_msg,
"chart_type": chart_type if 'chart_type' in locals() else None,
"public_url": None
}
except Exception as e:
error_msg = f"{type(e).__name__}: {str(e)}"
print(f"Error in chart creation: {error_msg}")
import traceback
traceback.print_exc()
return {
"success": False,
"error": error_msg,
"chart_type": chart_type if 'chart_type' in locals() else None,
"public_url": None
}
def get_iframe_html(chart_url: str, height: int = 600) -> str:
"""
Generate iframe HTML for embedding a Datawrapper chart.
Args:
chart_url: Public URL of the chart
height: Height of iframe in pixels
Returns:
HTML string with iframe
"""
if not chart_url:
return "<div style='padding: 50px; text-align: center;'>No chart available</div>"
return f"""
<div style="width: 100%; height: {height}px;">
<iframe
src="{chart_url}"
style="width: 100%; height: 100%; border: none;"
frameborder="0"
scrolling="no"
aria-label="Chart">
</iframe>
</div>
"""
|