Spaces:
Running
Running
File size: 11,505 Bytes
9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b e6c7182 9db289b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import re
import os
from vanna import Agent, AgentConfig
from vanna.core.registry import ToolRegistry
from vanna.core.user import UserResolver, User, RequestContext
from vanna.tools import RunSqlTool
from vanna.tools.agent_memory import SaveQuestionToolArgsTool, SearchSavedCorrectToolUsesTool
from vanna.integrations.postgres import PostgresRunner
from vanna.integrations.local.agent_memory import DemoAgentMemory
from .vanna_huggingface_llm_service import VannaHuggingFaceLlmService
from typing import List, Dict, Any, Optional
from vanna.core.system_prompt import SystemPromptBuilder
from vanna.core.registry import ToolSchema
from datetime import datetime
class CustomSQLSystemPromptBuilder(SystemPromptBuilder):
"""Complete system prompt builder for Vanna SQL assistant v2."""
VERSION = "2.2.0"
def __init__(self, company_name: str = "CoJournalist", sql_runner: Optional[PostgresRunner] = None):
self.company_name = company_name
self.sql_runner = sql_runner
async def build_system_prompt(
self,
user: User,
tool_schemas: List[ToolSchema],
context: Optional[Dict[str, Any]] = None
) -> str:
today = datetime.now().strftime("%Y-%m-%d")
username = getattr(user, "username", user.id)
# ======================
# BASE PROMPT
# ======================
prompt = f"[System Prompt v{self.VERSION}]\n\n"
prompt += f"You are an expert SQL assistant for the company {self.company_name}.\n"
prompt += f"Date: {today}\nUser: {username}\nGroups: {', '.join(user.group_memberships)}\n\n"
prompt += (
"Your role: generate correct and efficient SQL queries from natural language.\n"
"You always respond in **raw CSV format**, with no explanation or extra text.\n"
"You have full access to all tables and relationships described in the schema.\n"
)
# ======================
# SQL DIRECTIVES
# ======================
prompt += (
"\n## SQL Directives\n"
"- Always use table aliases in JOINs\n"
"- Never use SELECT *\n"
"- Prefer window functions over subqueries when possible\n"
"- Always include a LIMIT for exploratory queries\n"
"- Exclude posts where provider = 'SND'\n"
"- Exclude posts where type = 'resource'\n"
"- Exclude posts where type = 'insight'\n"
"- Format dates and numbers for readability\n"
)
# ======================
# DATABASE SCHEMA
# ======================
if context and "database_schema" in context:
prompt += "\n## Database Schema\n"
prompt += context["database_schema"]
else:
prompt += (
"\n## Database Schema\n"
"Tables:\n"
"- posts (id, title, source_url, author, published_date, image_url, type, provider_id, created_at, updated_at)\n"
"- providers (id, name)\n"
"- provider_attributes (id, provider_id, type, name)\n"
"- post_provider_attributes (post_id, attribute_id)\n"
"- tags (id, name)\n"
"- post_tags (post_id, tag_id, weight)\n"
"\nRelationships:\n"
" - posts.provider_id β providers.id\n"
" - post_provider_attributes.post_id β posts.id\n"
" - post_provider_attributes.attribute_id β provider_attributes.id\n"
" - provider_attributes.provider_id β providers.id\n"
" - post_tags.post_id β posts.id\n"
" - post_tags.tag_id β tags.id\n"
)
# ======================
# SEMANTIC INFORMATION
# ======================
prompt += (
"\n## Semantic Information\n"
"- `posts.title`: title of the content (often descriptive, may contain keywords).\n"
"- `posts.source_url`: external link to the article or resource.\n"
"- `posts.author`: author, journalist, or organization name (e.g., 'The New York Times').\n"
"- `posts.published_date`: publication date.\n"
"- `posts.type`: content type ENUM ('spotlight', 'resource', 'insight').\n"
"- `providers.name`: name of the publishing organization (e.g., 'Nuanced', 'SND').\n"
"- `tags.name`: thematic keyword or topic (e.g., '3D', 'AI', 'Design').\n"
"- `post_tags.weight`: relevance score between a post and a tag.\n"
)
# ======================
# BUSINESS LOGIC
# ======================
prompt += (
"\n## Business Logic\n"
"- Providers named 'SND' must always be excluded.\n"
"- A query mentioning an organization (e.g., 'New York Times') should search both `posts.author` and `providers.name`.\n"
"- By default, only posts with `type = 'spotlight'` are returned.\n"
"- Posts of type `resource` or `insight` are excluded unless explicitly requested.\n"
"- Tags link posts to specific themes or disciplines.\n"
"- A single post may have multiple tags, awards, or categories.\n"
"- If the user mentions a year (e.g., 'in 2021'), filter with `EXTRACT(YEAR FROM published_date) = 2021`.\n"
"- If the user says 'recently', filter posts from the last 90 days.\n"
"- Always limit exploratory results to 9 rows.\n"
)
# ======================
# AVAILABLE TOOLS
# ======================
if tool_schemas:
prompt += "\n## Available Tools\n"
for tool in tool_schemas:
prompt += f"- {tool.name}: {getattr(tool, 'description', 'No description')}\n"
prompt += f" Parameters: {getattr(tool, 'parameters', 'N/A')}\n"
# ======================
# MEMORY SYSTEM
# ======================
tool_names = [t.name for t in tool_schemas]
has_search = "search_saved_correct_tool_uses" in tool_names
has_save = "save_question_tool_args" in tool_names
if has_search or has_save:
prompt += "\n## Memory System\n"
if has_search:
prompt += "- Use `search_saved_correct_tool_uses` to detect past patterns.\n"
if has_save:
prompt += "- Use `save_question_tool_args` to store successful pairs.\n"
# ======================
# EXAMPLES
# ======================
prompt += (
"\n## Example Interactions\n"
"User: 'Show me posts related to 3D'\n"
"Assistant: [call run_sql with \"SELECT p.id, p.title, p.source_url, p.author, p.published_date, p.image_url, p.type "
"FROM posts p "
"JOIN post_tags pt ON p.id = pt.post_id "
"JOIN tags t ON pt.tag_id = t.id "
"JOIN providers pr ON p.provider_id = pr.id "
"WHERE t.name ILIKE '%3D%' AND pr.name != 'SND' AND p.type = 'spotlight' "
"LIMIT 9;\"]\n"
"\nUser: 'Show me posts from The New York Times'\n"
"Assistant: [call run_sql with \"SELECT p.id, p.title, p.source_url, p.author, p.published_date, p.image_url, p.type "
"FROM posts p "
"LEFT JOIN providers pr ON pr.id = p.provider_id "
"WHERE LOWER(p.author) LIKE '%new york times%' OR LOWER(pr.name) LIKE '%new york times%' "
"AND pr.name != 'SND' AND p.type = 'spotlight' "
"LIMIT 9;\"]\n"
)
# ======================
# FINAL INSTRUCTIONS
# ======================
prompt += (
"\nIMPORTANT:\n"
"- Always exclude posts with provider = 'SND'.\n"
"- Always exclude posts with type = 'resource' or 'insight'.\n"
"- Always return **only the raw CSV result** β no explanations, no JSON, no commentary.\n"
"- Stop tool execution once the query result is obtained.\n"
)
return prompt
class SimpleUserResolver(UserResolver):
async def resolve_user(self, request_context: RequestContext) -> User:
user_email = request_context.get_cookie('vanna_email') or 'guest@example.com'
group = 'admin' if user_email == 'admin@example.com' else 'user'
return User(id=user_email, email=user_email, group_memberships=[group])
class VannaComponent:
def __init__(
self,
hf_model: str,
hf_token: str,
hf_provider: str,
connection_string: str,
):
llm = VannaHuggingFaceLlmService(model=hf_model, token=hf_token, provider=hf_provider)
self.sql_runner = PostgresRunner(connection_string=connection_string)
db_tool = RunSqlTool(sql_runner=self.sql_runner)
agent_memory = DemoAgentMemory(max_items=1000)
save_memory_tool = SaveQuestionToolArgsTool(agent_memory)
search_memory_tool = SearchSavedCorrectToolUsesTool(agent_memory)
self.user_resolver = SimpleUserResolver()
tools = ToolRegistry()
tools.register_local_tool(db_tool, access_groups=['admin', 'user'])
tools.register_local_tool(save_memory_tool, access_groups=['admin'])
tools.register_local_tool(search_memory_tool, access_groups=['admin', 'user'])
self.agent = Agent(
llm_service=llm,
tool_registry=tools,
user_resolver=self.user_resolver,
system_prompt_builder=CustomSQLSystemPromptBuilder("CoJournalist", self.sql_runner),
config=AgentConfig(stream_responses=False, max_tool_iterations=1)
)
async def ask(self, prompt_for_llm: str):
ctx = RequestContext()
print(f"π Prompt sent to LLM: {prompt_for_llm}")
final_text = ""
seen_texts = set()
async for component in self.agent.send_message(request_context=ctx, message=prompt_for_llm):
simple = getattr(component, "simple_component", None)
text = getattr(simple, "text", "") if simple else ""
if text and text not in seen_texts:
print(f"π¬ LLM says (part): {text[:200]}...")
final_text += text + "\n"
seen_texts.add(text)
sql_query = getattr(component, "sql", None)
if sql_query:
print(f"π§Ύ SQL Query Generated: {sql_query}")
metadata = getattr(component, "metadata", None)
if metadata:
print(f"π Metadata: {metadata}")
component_type = getattr(component, "type", None)
if component_type:
print(f"π Component Type: {component_type}")
match = re.search(r"query_results_[\w-]+\.csv", final_text)
if match:
filename = match.group(0)
folder = "513935c4d2db2d2d"
full_path = os.path.join(folder, filename)
if os.path.exists(full_path):
print(f"π Reading result file: {full_path}")
with open(full_path, "r", encoding="utf-8") as f:
csv_data = f.read().strip()
print("π€ Response sent to user (from file):", csv_data[:300])
return csv_data
else:
print(f"β οΈ File not found: {full_path}")
return final_text
|