Spaces:
Sleeping
Sleeping
Tom
Claude
commited on
Commit
·
1e2d815
1
Parent(s):
53061be
feat: add progress indicators with generator pattern
Browse filesConvert search_topics() and generate_script() to generators that yield
intermediate status messages. This enables Gradio's progress bar and
spinner to display during long-running operations.
- Use yield instead of return to create UI update checkpoints
- Add gr.Progress() calls for percentage-based progress bar
- Enable queue before event handlers for proper async behavior
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
- .gitignore +43 -0
- app.py +318 -0
- requirements.txt +14 -0
- src/__init__.py +21 -0
- src/llm_client.py +191 -0
- src/prompts.py +125 -0
- src/vectorstore.py +418 -0
.gitignore
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Environment variables (contains secrets)
|
| 2 |
+
.env
|
| 3 |
+
|
| 4 |
+
# Python
|
| 5 |
+
__pycache__/
|
| 6 |
+
*.py[cod]
|
| 7 |
+
*$py.class
|
| 8 |
+
*.so
|
| 9 |
+
.Python
|
| 10 |
+
build/
|
| 11 |
+
develop-eggs/
|
| 12 |
+
dist/
|
| 13 |
+
downloads/
|
| 14 |
+
eggs/
|
| 15 |
+
.eggs/
|
| 16 |
+
lib/
|
| 17 |
+
lib64/
|
| 18 |
+
parts/
|
| 19 |
+
sdist/
|
| 20 |
+
var/
|
| 21 |
+
wheels/
|
| 22 |
+
*.egg-info/
|
| 23 |
+
.installed.cfg
|
| 24 |
+
*.egg
|
| 25 |
+
|
| 26 |
+
# Virtual environments
|
| 27 |
+
venv/
|
| 28 |
+
ENV/
|
| 29 |
+
env/
|
| 30 |
+
.venv/
|
| 31 |
+
|
| 32 |
+
# IDE
|
| 33 |
+
.idea/
|
| 34 |
+
.vscode/
|
| 35 |
+
*.swp
|
| 36 |
+
*.swo
|
| 37 |
+
|
| 38 |
+
# OS
|
| 39 |
+
.DS_Store
|
| 40 |
+
Thumbs.db
|
| 41 |
+
|
| 42 |
+
# Gradio
|
| 43 |
+
flagged/
|
app.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
NewPress AI - Johnny Harris Script Assistant
|
| 3 |
+
|
| 4 |
+
A Gradio app that uses a Supabase vector database of Johnny Harris transcripts to:
|
| 5 |
+
1. Search if topics have been covered before
|
| 6 |
+
2. Generate scripts in Johnny's voice from bullet points
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
+
from src.vectorstore import TranscriptVectorStore, create_vectorstore
|
| 14 |
+
from src.llm_client import InferenceProviderClient, create_llm_client
|
| 15 |
+
from src.prompts import (
|
| 16 |
+
TOPIC_SEARCH_SYSTEM_PROMPT,
|
| 17 |
+
SCRIPT_SYSTEM_PROMPT,
|
| 18 |
+
get_topic_search_prompt,
|
| 19 |
+
get_script_prompt
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load environment variables
|
| 23 |
+
load_dotenv()
|
| 24 |
+
|
| 25 |
+
# Initialize components (lazy loading)
|
| 26 |
+
vectorstore = None
|
| 27 |
+
llm_client = None
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_vectorstore() -> TranscriptVectorStore:
|
| 31 |
+
"""Get or create the vector store instance"""
|
| 32 |
+
global vectorstore
|
| 33 |
+
if vectorstore is None:
|
| 34 |
+
vectorstore = create_vectorstore()
|
| 35 |
+
return vectorstore
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_llm_client() -> InferenceProviderClient:
|
| 39 |
+
"""Get or create the LLM client instance"""
|
| 40 |
+
global llm_client
|
| 41 |
+
if llm_client is None:
|
| 42 |
+
llm_client = create_llm_client()
|
| 43 |
+
return llm_client
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# =============================================================================
|
| 47 |
+
# TAB 1: TOPIC SEARCH
|
| 48 |
+
# =============================================================================
|
| 49 |
+
|
| 50 |
+
def expand_query(query: str) -> list:
|
| 51 |
+
"""Use LLM to generate related search terms for broader coverage"""
|
| 52 |
+
try:
|
| 53 |
+
llm = get_llm_client()
|
| 54 |
+
prompt = f"""Given this search query about Johnny Harris video topics: "{query}"
|
| 55 |
+
|
| 56 |
+
Generate 3-5 related search terms that might find relevant videos.
|
| 57 |
+
Think about: related topics, geographic regions, historical events, or concepts that might be covered.
|
| 58 |
+
Return ONLY the terms, one per line, no numbering or explanation."""
|
| 59 |
+
|
| 60 |
+
response = llm.generate(prompt, max_tokens=100, temperature=0.3)
|
| 61 |
+
terms = [t.strip() for t in response.strip().split('\n') if t.strip()]
|
| 62 |
+
return [query] + terms[:5]
|
| 63 |
+
except Exception:
|
| 64 |
+
return [query]
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def search_topics(query: str, progress=gr.Progress()):
|
| 68 |
+
"""
|
| 69 |
+
Generator that yields progress updates during search.
|
| 70 |
+
Uses LLM query expansion for broader, more relevant results.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
query: User's topic or question
|
| 74 |
+
progress: Gradio progress tracker
|
| 75 |
+
|
| 76 |
+
Yields:
|
| 77 |
+
Progress status messages, then final search results
|
| 78 |
+
"""
|
| 79 |
+
if not query or not query.strip():
|
| 80 |
+
yield "Please enter a topic or question to search."
|
| 81 |
+
return
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
vs = get_vectorstore()
|
| 85 |
+
|
| 86 |
+
# Expand query using LLM
|
| 87 |
+
progress(0.1, desc="Expanding search query...")
|
| 88 |
+
yield "Expanding search query..."
|
| 89 |
+
search_terms = expand_query(query.strip())
|
| 90 |
+
|
| 91 |
+
# Search with each term and collect results
|
| 92 |
+
all_results = []
|
| 93 |
+
total_terms = len(search_terms)
|
| 94 |
+
for i, term in enumerate(search_terms):
|
| 95 |
+
pct = 0.2 + (0.5 * (i / total_terms))
|
| 96 |
+
progress(pct, desc=f"Searching: {term[:30]}...")
|
| 97 |
+
yield f"Searching: {term[:30]}..."
|
| 98 |
+
results = vs.similarity_search(
|
| 99 |
+
query=term,
|
| 100 |
+
k=20,
|
| 101 |
+
match_threshold=0.1
|
| 102 |
+
)
|
| 103 |
+
all_results.extend(results)
|
| 104 |
+
|
| 105 |
+
progress(0.8, desc="Processing results...")
|
| 106 |
+
yield "Processing results..."
|
| 107 |
+
|
| 108 |
+
# Deduplicate by video title, keep highest similarity score
|
| 109 |
+
seen = {}
|
| 110 |
+
for r in all_results:
|
| 111 |
+
if r.title not in seen or r.similarity > seen[r.title].similarity:
|
| 112 |
+
seen[r.title] = r
|
| 113 |
+
|
| 114 |
+
# Sort by similarity and get top results
|
| 115 |
+
unique_results = sorted(seen.values(), key=lambda x: x.similarity, reverse=True)[:15]
|
| 116 |
+
|
| 117 |
+
if not unique_results:
|
| 118 |
+
yield f"No matching content found for: **{query}**\n\nThis topic may not have been covered yet, or try rephrasing your search."
|
| 119 |
+
return
|
| 120 |
+
|
| 121 |
+
# Format results for display
|
| 122 |
+
output = vs.format_results_for_display(unique_results)
|
| 123 |
+
|
| 124 |
+
search_info = f"*Searched: {', '.join(search_terms)}*\n\n"
|
| 125 |
+
progress(1.0, desc="Done!")
|
| 126 |
+
yield f"## Search Results for: \"{query}\"\n\n{search_info}{output}"
|
| 127 |
+
|
| 128 |
+
except Exception as e:
|
| 129 |
+
yield f"Error searching: {str(e)}"
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# =============================================================================
|
| 133 |
+
# TAB 2: SCRIPT PRODUCTION
|
| 134 |
+
# =============================================================================
|
| 135 |
+
|
| 136 |
+
def generate_script(user_notes: str, max_context_chunks: int = 100, progress=gr.Progress()):
|
| 137 |
+
"""
|
| 138 |
+
Generator that yields progress updates during script generation.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
user_notes: User's bullet points and notes
|
| 142 |
+
max_context_chunks: Number of style reference chunks to use
|
| 143 |
+
progress: Gradio progress tracker
|
| 144 |
+
|
| 145 |
+
Yields:
|
| 146 |
+
Progress status messages, then final generated script
|
| 147 |
+
"""
|
| 148 |
+
if not user_notes or not user_notes.strip():
|
| 149 |
+
yield "Please enter your bullet points or notes to transform into a script."
|
| 150 |
+
return
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
progress(0.05, desc="Gathering style references...")
|
| 154 |
+
yield "Gathering style references..."
|
| 155 |
+
vs = get_vectorstore()
|
| 156 |
+
llm = get_llm_client()
|
| 157 |
+
|
| 158 |
+
progress(0.15, desc="Searching knowledge base...")
|
| 159 |
+
yield "Searching knowledge base for style references..."
|
| 160 |
+
context_chunks = vs.get_bulk_style_context(
|
| 161 |
+
topic_query=user_notes.strip(),
|
| 162 |
+
max_chunks=max_context_chunks,
|
| 163 |
+
topic_relevant_ratio=0.3
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
progress(0.35, desc="Preparing context...")
|
| 167 |
+
yield "Preparing context for the LLM..."
|
| 168 |
+
context = vs.format_context_for_llm(context_chunks) if context_chunks else ""
|
| 169 |
+
|
| 170 |
+
progress(0.5, desc="Building prompt...")
|
| 171 |
+
yield "Building prompt..."
|
| 172 |
+
prompt_template = get_script_prompt()
|
| 173 |
+
prompt = prompt_template.format(
|
| 174 |
+
user_input=user_notes.strip(),
|
| 175 |
+
context=context
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
progress(0.7, desc="Generating script (30-60 seconds)...")
|
| 179 |
+
yield "Generating script (this may take 30-60 seconds)..."
|
| 180 |
+
script = llm.generate(
|
| 181 |
+
prompt=prompt,
|
| 182 |
+
system_prompt=SCRIPT_SYSTEM_PROMPT,
|
| 183 |
+
temperature=0.7,
|
| 184 |
+
max_tokens=2000
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
progress(1.0, desc="Complete!")
|
| 188 |
+
yield f"## Generated Script\n\n{script.strip()}"
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
yield f"**Error:** {str(e)}"
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
# =============================================================================
|
| 195 |
+
# GRADIO INTERFACE
|
| 196 |
+
# =============================================================================
|
| 197 |
+
|
| 198 |
+
def create_app():
|
| 199 |
+
"""Create and configure the Gradio application"""
|
| 200 |
+
|
| 201 |
+
with gr.Blocks(
|
| 202 |
+
title="NewPress AI - Johnny Harris Script Assistant",
|
| 203 |
+
theme=gr.themes.Soft()
|
| 204 |
+
) as app:
|
| 205 |
+
app.queue() # Enable queue before defining event handlers for progress to work
|
| 206 |
+
|
| 207 |
+
gr.Markdown("""
|
| 208 |
+
# NewPress AI
|
| 209 |
+
### Johnny Harris Script Assistant
|
| 210 |
+
|
| 211 |
+
Use Johnny's archive of hundreds of video transcripts to:
|
| 212 |
+
- **Search** if a topic has been covered before
|
| 213 |
+
- **Generate** scripts in Johnny's voice from your notes
|
| 214 |
+
""")
|
| 215 |
+
|
| 216 |
+
with gr.Tabs():
|
| 217 |
+
# =================================================================
|
| 218 |
+
# TAB 1: TOPIC SEARCH
|
| 219 |
+
# =================================================================
|
| 220 |
+
with gr.TabItem("Topic Search"):
|
| 221 |
+
gr.Markdown("""
|
| 222 |
+
### Has Johnny covered this topic?
|
| 223 |
+
|
| 224 |
+
Search the archive to see if a topic has been addressed in previous videos.
|
| 225 |
+
""")
|
| 226 |
+
|
| 227 |
+
with gr.Row():
|
| 228 |
+
with gr.Column(scale=3):
|
| 229 |
+
topic_input = gr.Textbox(
|
| 230 |
+
label="Topic or Question",
|
| 231 |
+
placeholder="e.g., Why do borders exist? or US immigration policy",
|
| 232 |
+
lines=2
|
| 233 |
+
)
|
| 234 |
+
with gr.Column(scale=1):
|
| 235 |
+
search_btn = gr.Button("Search", variant="primary", size="lg")
|
| 236 |
+
|
| 237 |
+
search_output = gr.Markdown(label="Search Results", value="Search results will appear here...")
|
| 238 |
+
|
| 239 |
+
search_btn.click(
|
| 240 |
+
fn=search_topics,
|
| 241 |
+
inputs=[topic_input],
|
| 242 |
+
outputs=[search_output],
|
| 243 |
+
show_progress="full"
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
topic_input.submit(
|
| 247 |
+
fn=search_topics,
|
| 248 |
+
inputs=[topic_input],
|
| 249 |
+
outputs=[search_output],
|
| 250 |
+
show_progress="full"
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# =================================================================
|
| 254 |
+
# TAB 2: SCRIPT PRODUCTION
|
| 255 |
+
# =================================================================
|
| 256 |
+
with gr.TabItem("Script Production"):
|
| 257 |
+
gr.Markdown("""
|
| 258 |
+
### Transform your ideas into Johnny's voice
|
| 259 |
+
|
| 260 |
+
Enter your bullet points, notes, or rough ideas. The AI will analyze
|
| 261 |
+
Johnny's entire archive of scripts and generate a draft in his signature style.
|
| 262 |
+
""")
|
| 263 |
+
|
| 264 |
+
with gr.Row():
|
| 265 |
+
with gr.Column():
|
| 266 |
+
notes_input = gr.Textbox(
|
| 267 |
+
label="Your Notes & Bullet Points",
|
| 268 |
+
placeholder="""Enter your ideas, for example:
|
| 269 |
+
|
| 270 |
+
- Topic: Why shipping containers changed the world
|
| 271 |
+
- Key points:
|
| 272 |
+
- Before containers, loading ships took weeks
|
| 273 |
+
- Malcolm McLean invented the standard container in 1956
|
| 274 |
+
- Transformed global trade
|
| 275 |
+
- Connection to globalization and supply chains
|
| 276 |
+
- Angle: The hidden infrastructure we never think about""",
|
| 277 |
+
lines=12
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
context_slider = gr.Slider(
|
| 282 |
+
minimum=20,
|
| 283 |
+
maximum=200,
|
| 284 |
+
value=100,
|
| 285 |
+
step=10,
|
| 286 |
+
label="Style Reference Depth",
|
| 287 |
+
info="More excerpts = better style matching, but slower"
|
| 288 |
+
)
|
| 289 |
+
generate_btn = gr.Button("Generate Script", variant="primary", size="lg")
|
| 290 |
+
|
| 291 |
+
script_output = gr.Markdown(label="Generated Script", value="Generated script will appear here...") # shows progress + final script
|
| 292 |
+
|
| 293 |
+
generate_btn.click(
|
| 294 |
+
fn=generate_script,
|
| 295 |
+
inputs=[notes_input, context_slider],
|
| 296 |
+
outputs=[script_output],
|
| 297 |
+
show_progress="full"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
gr.Markdown("""
|
| 301 |
+
---
|
| 302 |
+
*Powered by Johnny Harris's transcript archive, Jina AI embeddings, and Qwen-2.5-72B*
|
| 303 |
+
""")
|
| 304 |
+
|
| 305 |
+
return app
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# =============================================================================
|
| 309 |
+
# MAIN
|
| 310 |
+
# =============================================================================
|
| 311 |
+
|
| 312 |
+
if __name__ == "__main__":
|
| 313 |
+
app = create_app()
|
| 314 |
+
app.launch(
|
| 315 |
+
server_name="0.0.0.0",
|
| 316 |
+
server_port=7860,
|
| 317 |
+
share=False
|
| 318 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Gradio for UI
|
| 2 |
+
gradio>=4.0.0
|
| 3 |
+
|
| 4 |
+
# Supabase client for vector store
|
| 5 |
+
supabase>=2.0.0
|
| 6 |
+
|
| 7 |
+
# Hugging Face Inference (for LLM)
|
| 8 |
+
huggingface-hub>=0.20.0
|
| 9 |
+
|
| 10 |
+
# Environment variables
|
| 11 |
+
python-dotenv>=1.0.0
|
| 12 |
+
|
| 13 |
+
# HTTP requests (for Jina API)
|
| 14 |
+
requests
|
src/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""NewPress AI - Johnny Harris Script Assistant"""
|
| 2 |
+
|
| 3 |
+
from .vectorstore import TranscriptVectorStore, create_vectorstore
|
| 4 |
+
from .llm_client import InferenceProviderClient, create_llm_client
|
| 5 |
+
from .prompts import (
|
| 6 |
+
TOPIC_SEARCH_SYSTEM_PROMPT,
|
| 7 |
+
SCRIPT_SYSTEM_PROMPT,
|
| 8 |
+
SCRIPT_PROMPT_TEMPLATE,
|
| 9 |
+
get_script_prompt
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
"TranscriptVectorStore",
|
| 14 |
+
"create_vectorstore",
|
| 15 |
+
"InferenceProviderClient",
|
| 16 |
+
"create_llm_client",
|
| 17 |
+
"TOPIC_SEARCH_SYSTEM_PROMPT",
|
| 18 |
+
"SCRIPT_SYSTEM_PROMPT",
|
| 19 |
+
"SCRIPT_PROMPT_TEMPLATE",
|
| 20 |
+
"get_script_prompt"
|
| 21 |
+
]
|
src/llm_client.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LLM client for Hugging Face Inference API"""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from typing import Iterator, Optional
|
| 5 |
+
from huggingface_hub import InferenceClient
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class InferenceProviderClient:
|
| 9 |
+
"""Client for Hugging Face Inference API"""
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
model: str = "Qwen/Qwen2.5-72B-Instruct",
|
| 14 |
+
api_key: Optional[str] = None,
|
| 15 |
+
temperature: float = 0.7,
|
| 16 |
+
max_tokens: int = 2000
|
| 17 |
+
):
|
| 18 |
+
"""
|
| 19 |
+
Initialize the Inference client
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
model: Model identifier (default: Qwen2.5-72B-Instruct)
|
| 23 |
+
api_key: HuggingFace API token (defaults to HF_TOKEN env var)
|
| 24 |
+
temperature: Sampling temperature (0.0 to 1.0)
|
| 25 |
+
max_tokens: Maximum tokens to generate
|
| 26 |
+
"""
|
| 27 |
+
self.model = model
|
| 28 |
+
self.temperature = temperature
|
| 29 |
+
self.max_tokens = max_tokens
|
| 30 |
+
|
| 31 |
+
api_key = api_key or os.getenv("HF_TOKEN")
|
| 32 |
+
if not api_key:
|
| 33 |
+
raise ValueError("HF_TOKEN environment variable must be set or api_key provided")
|
| 34 |
+
|
| 35 |
+
self.client = InferenceClient(token=api_key)
|
| 36 |
+
|
| 37 |
+
def generate(
|
| 38 |
+
self,
|
| 39 |
+
prompt: str,
|
| 40 |
+
system_prompt: Optional[str] = None,
|
| 41 |
+
temperature: Optional[float] = None,
|
| 42 |
+
max_tokens: Optional[int] = None
|
| 43 |
+
) -> str:
|
| 44 |
+
"""
|
| 45 |
+
Generate a response from the LLM
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
prompt: User prompt
|
| 49 |
+
system_prompt: Optional system prompt
|
| 50 |
+
temperature: Override default temperature
|
| 51 |
+
max_tokens: Override default max tokens
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
Generated text response
|
| 55 |
+
"""
|
| 56 |
+
messages = []
|
| 57 |
+
|
| 58 |
+
if system_prompt:
|
| 59 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 60 |
+
|
| 61 |
+
messages.append({"role": "user", "content": prompt})
|
| 62 |
+
|
| 63 |
+
response = self.client.chat_completion(
|
| 64 |
+
model=self.model,
|
| 65 |
+
messages=messages,
|
| 66 |
+
temperature=temperature or self.temperature,
|
| 67 |
+
max_tokens=max_tokens or self.max_tokens
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return response.choices[0].message.content
|
| 71 |
+
|
| 72 |
+
def generate_stream(
|
| 73 |
+
self,
|
| 74 |
+
prompt: str,
|
| 75 |
+
system_prompt: Optional[str] = None,
|
| 76 |
+
temperature: Optional[float] = None,
|
| 77 |
+
max_tokens: Optional[int] = None
|
| 78 |
+
) -> Iterator[str]:
|
| 79 |
+
"""
|
| 80 |
+
Generate a streaming response from the LLM
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
prompt: User prompt
|
| 84 |
+
system_prompt: Optional system prompt
|
| 85 |
+
temperature: Override default temperature
|
| 86 |
+
max_tokens: Override default max tokens
|
| 87 |
+
|
| 88 |
+
Yields:
|
| 89 |
+
Text chunks as they are generated
|
| 90 |
+
"""
|
| 91 |
+
messages = []
|
| 92 |
+
|
| 93 |
+
if system_prompt:
|
| 94 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 95 |
+
|
| 96 |
+
messages.append({"role": "user", "content": prompt})
|
| 97 |
+
|
| 98 |
+
stream = self.client.chat_completion(
|
| 99 |
+
model=self.model,
|
| 100 |
+
messages=messages,
|
| 101 |
+
temperature=temperature or self.temperature,
|
| 102 |
+
max_tokens=max_tokens or self.max_tokens,
|
| 103 |
+
stream=True
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
for chunk in stream:
|
| 107 |
+
try:
|
| 108 |
+
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
| 109 |
+
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
| 110 |
+
if chunk.choices[0].delta.content is not None:
|
| 111 |
+
yield chunk.choices[0].delta.content
|
| 112 |
+
except (IndexError, AttributeError):
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
def chat(
|
| 116 |
+
self,
|
| 117 |
+
messages: list[dict],
|
| 118 |
+
temperature: Optional[float] = None,
|
| 119 |
+
max_tokens: Optional[int] = None,
|
| 120 |
+
stream: bool = False
|
| 121 |
+
):
|
| 122 |
+
"""
|
| 123 |
+
Multi-turn chat completion
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
messages: List of message dicts with 'role' and 'content'
|
| 127 |
+
temperature: Override default temperature
|
| 128 |
+
max_tokens: Override default max tokens
|
| 129 |
+
stream: Whether to stream the response
|
| 130 |
+
|
| 131 |
+
Returns:
|
| 132 |
+
Response text (or iterator if stream=True)
|
| 133 |
+
"""
|
| 134 |
+
response = self.client.chat_completion(
|
| 135 |
+
model=self.model,
|
| 136 |
+
messages=messages,
|
| 137 |
+
temperature=temperature or self.temperature,
|
| 138 |
+
max_tokens=max_tokens or self.max_tokens,
|
| 139 |
+
stream=stream
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
if stream:
|
| 143 |
+
def stream_generator():
|
| 144 |
+
for chunk in response:
|
| 145 |
+
try:
|
| 146 |
+
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
| 147 |
+
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
| 148 |
+
if chunk.choices[0].delta.content is not None:
|
| 149 |
+
yield chunk.choices[0].delta.content
|
| 150 |
+
except (IndexError, AttributeError):
|
| 151 |
+
continue
|
| 152 |
+
return stream_generator()
|
| 153 |
+
else:
|
| 154 |
+
return response.choices[0].message.content
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def create_llm_client(
|
| 158 |
+
model: str = "Qwen/Qwen2.5-72B-Instruct",
|
| 159 |
+
temperature: float = 0.7,
|
| 160 |
+
max_tokens: int = 2000
|
| 161 |
+
) -> InferenceProviderClient:
|
| 162 |
+
"""
|
| 163 |
+
Factory function to create and return a configured LLM client
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
model: Model identifier
|
| 167 |
+
temperature: Sampling temperature
|
| 168 |
+
max_tokens: Maximum tokens to generate
|
| 169 |
+
|
| 170 |
+
Returns:
|
| 171 |
+
Configured InferenceProviderClient
|
| 172 |
+
"""
|
| 173 |
+
return InferenceProviderClient(
|
| 174 |
+
model=model,
|
| 175 |
+
temperature=temperature,
|
| 176 |
+
max_tokens=max_tokens
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# Available models
|
| 181 |
+
AVAILABLE_MODELS = {
|
| 182 |
+
"qwen-72b": "Qwen/Qwen2.5-72B-Instruct",
|
| 183 |
+
"llama-3.1-8b": "meta-llama/Llama-3.1-8B-Instruct",
|
| 184 |
+
"llama-3-8b": "meta-llama/Meta-Llama-3-8B-Instruct",
|
| 185 |
+
"mistral-7b": "mistralai/Mistral-7B-Instruct-v0.3",
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def get_model_identifier(model_name: str) -> str:
|
| 190 |
+
"""Get full model identifier from short name"""
|
| 191 |
+
return AVAILABLE_MODELS.get(model_name, AVAILABLE_MODELS["qwen-72b"])
|
src/prompts.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Prompt templates for Johnny Harris Script Assistant"""
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
# =============================================================================
|
| 5 |
+
# TAB 1: TOPIC SEARCH PROMPTS
|
| 6 |
+
# =============================================================================
|
| 7 |
+
|
| 8 |
+
TOPIC_SEARCH_SYSTEM_PROMPT = """You analyze search results from Johnny Harris's video archive.
|
| 9 |
+
|
| 10 |
+
Given matching transcript excerpts, provide a clear summary of:
|
| 11 |
+
1. Which videos covered this topic (with titles)
|
| 12 |
+
2. Key points and perspectives from each relevant video
|
| 13 |
+
3. How thoroughly the topic was explored
|
| 14 |
+
|
| 15 |
+
Be concise but informative. Help the user understand what content already exists on this topic."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
TOPIC_SEARCH_PROMPT_TEMPLATE = """USER'S QUESTION: {query}
|
| 19 |
+
|
| 20 |
+
MATCHING CONTENT FROM JOHNNY'S ARCHIVE:
|
| 21 |
+
{context}
|
| 22 |
+
|
| 23 |
+
Based on these search results, summarize:
|
| 24 |
+
1. Which videos address this topic
|
| 25 |
+
2. Key points covered in each
|
| 26 |
+
3. Overall coverage assessment - has Johnny covered this thoroughly, partially, or not at all?
|
| 27 |
+
|
| 28 |
+
Keep your response concise and actionable."""
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# =============================================================================
|
| 32 |
+
# TAB 2: SCRIPT PRODUCTION PROMPTS
|
| 33 |
+
# =============================================================================
|
| 34 |
+
|
| 35 |
+
SCRIPT_SYSTEM_PROMPT = """You are a script writing assistant that has deeply studied Johnny Harris's style.
|
| 36 |
+
|
| 37 |
+
JOHNNY'S VOICE CHARACTERISTICS (derived from extensive analysis of his work):
|
| 38 |
+
|
| 39 |
+
**Narrative Structure:**
|
| 40 |
+
- Opens with a hook - a provocative question, surprising fact, or personal moment
|
| 41 |
+
- Builds tension through questions: "But here's the thing...", "So why does this matter?"
|
| 42 |
+
- Uses the "zoom out" technique - starts specific, expands to bigger picture
|
| 43 |
+
- Weaves between personal story and broader research/data
|
| 44 |
+
- Ends with reflection or call to think differently
|
| 45 |
+
|
| 46 |
+
**Language Patterns:**
|
| 47 |
+
- Direct address: "I want to show you something", "Let me explain"
|
| 48 |
+
- Conversational markers: "the thing is...", "here's what's interesting...", "and this is where it gets wild"
|
| 49 |
+
- Short punchy sentences followed by longer explanatory ones
|
| 50 |
+
- Rhetorical questions that pull the viewer in
|
| 51 |
+
- Admits uncertainty: "I don't fully understand this yet", "I'm still wrestling with this"
|
| 52 |
+
|
| 53 |
+
**Tone:**
|
| 54 |
+
- Curious and genuinely excited about learning
|
| 55 |
+
- Slightly irreverent but deeply researched
|
| 56 |
+
- Personal without being self-indulgent
|
| 57 |
+
- Acknowledges complexity without being academic
|
| 58 |
+
- Finds the human story in geopolitics/data
|
| 59 |
+
|
| 60 |
+
Your job is to transform the user's bullet points and notes into a script draft that authentically sounds like Johnny wrote it. Study the provided transcript excerpts carefully - they are your primary style reference. Do not include visual cues, bracketed notes, or stage directions—return narrative script text only.
|
| 61 |
+
|
| 62 |
+
**FORMAT: YouTube Short (under 3 minutes)**
|
| 63 |
+
- Target length: 400-500 words (roughly 2-3 minutes when spoken)
|
| 64 |
+
- Must hook immediately - no slow buildup
|
| 65 |
+
- Punchier pacing than long-form content
|
| 66 |
+
- One core idea, explored quickly but compellingly
|
| 67 |
+
- End with a memorable takeaway or question"""
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
SCRIPT_PROMPT_TEMPLATE = """USER'S NOTES AND BULLET POINTS:
|
| 71 |
+
{user_input}
|
| 72 |
+
|
| 73 |
+
JOHNNY'S STYLE REFERENCE (transcript excerpts from his videos):
|
| 74 |
+
{context}
|
| 75 |
+
|
| 76 |
+
INSTRUCTIONS:
|
| 77 |
+
Transform the user's notes into a YouTube Short script (under 3 minutes) in Johnny Harris's voice.
|
| 78 |
+
|
| 79 |
+
Requirements:
|
| 80 |
+
1. HOOK IMMEDIATELY - first sentence must grab attention (no "hey guys" or slow intros)
|
| 81 |
+
2. Keep it to ONE core idea - shorts don't have time for tangents
|
| 82 |
+
3. Use Johnny's characteristic phrases and energy from the excerpts
|
| 83 |
+
4. Punchier pacing - short sentences, quick reveals, maintain momentum
|
| 84 |
+
5. End with a memorable line - a surprising fact, provocative question, or reframe
|
| 85 |
+
6. Do not include any visual cues, bracketed notes, or stage directions—return only the spoken script text.
|
| 86 |
+
|
| 87 |
+
Target: 400-500 words (2-3 minutes when spoken at YouTube pace).
|
| 88 |
+
Write a script that sounds like Johnny but optimized for the short-form vertical format."""
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# =============================================================================
|
| 92 |
+
# UTILITY CLASSES AND FUNCTIONS
|
| 93 |
+
# =============================================================================
|
| 94 |
+
|
| 95 |
+
class SimplePromptTemplate:
|
| 96 |
+
"""Simple prompt template using string formatting"""
|
| 97 |
+
|
| 98 |
+
def __init__(self, template: str, input_variables: list):
|
| 99 |
+
self.template = template
|
| 100 |
+
self.input_variables = input_variables
|
| 101 |
+
|
| 102 |
+
def format(self, **kwargs) -> str:
|
| 103 |
+
"""Format the template with provided variables"""
|
| 104 |
+
return self.template.format(**kwargs)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
TOPIC_SEARCH_PROMPT = SimplePromptTemplate(
|
| 108 |
+
template=TOPIC_SEARCH_PROMPT_TEMPLATE,
|
| 109 |
+
input_variables=["query", "context"]
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
SCRIPT_PROMPT = SimplePromptTemplate(
|
| 113 |
+
template=SCRIPT_PROMPT_TEMPLATE,
|
| 114 |
+
input_variables=["user_input", "context"]
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def get_topic_search_prompt() -> SimplePromptTemplate:
|
| 119 |
+
"""Get the topic search prompt template"""
|
| 120 |
+
return TOPIC_SEARCH_PROMPT
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def get_script_prompt() -> SimplePromptTemplate:
|
| 124 |
+
"""Get the script generation prompt template"""
|
| 125 |
+
return SCRIPT_PROMPT
|
src/vectorstore.py
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Supabase PGVector connection for Johnny Harris transcript embeddings"""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
from typing import List, Dict, Any, Optional
|
| 6 |
+
from supabase import create_client, Client
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class TranscriptChunk:
|
| 11 |
+
"""Represents a transcript chunk from the database"""
|
| 12 |
+
|
| 13 |
+
def __init__(self, chunk_text: str, metadata: dict):
|
| 14 |
+
self.chunk_text = chunk_text
|
| 15 |
+
self.metadata = metadata
|
| 16 |
+
|
| 17 |
+
@property
|
| 18 |
+
def video_id(self) -> str:
|
| 19 |
+
return self.metadata.get('video_id', '')
|
| 20 |
+
|
| 21 |
+
@property
|
| 22 |
+
def video_url(self) -> str:
|
| 23 |
+
return self.metadata.get('video_url', '')
|
| 24 |
+
|
| 25 |
+
@property
|
| 26 |
+
def title(self) -> str:
|
| 27 |
+
return self.metadata.get('title', '')
|
| 28 |
+
|
| 29 |
+
@property
|
| 30 |
+
def chunk_index(self) -> int:
|
| 31 |
+
return self.metadata.get('chunk_index', 0)
|
| 32 |
+
|
| 33 |
+
@property
|
| 34 |
+
def total_chunks(self) -> int:
|
| 35 |
+
return self.metadata.get('total_chunks', 0)
|
| 36 |
+
|
| 37 |
+
@property
|
| 38 |
+
def similarity(self) -> float:
|
| 39 |
+
return self.metadata.get('similarity', 0.0)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class TranscriptVectorStore:
|
| 43 |
+
"""Manages connection to Supabase PGVector database with Johnny Harris transcript embeddings"""
|
| 44 |
+
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
supabase_url: Optional[str] = None,
|
| 48 |
+
supabase_key: Optional[str] = None,
|
| 49 |
+
jina_api_key: Optional[str] = None,
|
| 50 |
+
embedding_model: str = "jina-embeddings-v3"
|
| 51 |
+
):
|
| 52 |
+
"""
|
| 53 |
+
Initialize the vector store connection
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
supabase_url: Supabase project URL (defaults to SUPABASE_URL env var)
|
| 57 |
+
supabase_key: Supabase anon key (defaults to SUPABASE_KEY env var)
|
| 58 |
+
jina_api_key: Jina AI API key (defaults to JINA_API_KEY env var)
|
| 59 |
+
embedding_model: Embedding model to use (default: jina-embeddings-v3)
|
| 60 |
+
"""
|
| 61 |
+
self.supabase_url = supabase_url or os.getenv("SUPABASE_URL")
|
| 62 |
+
self.supabase_key = supabase_key or os.getenv("SUPABASE_KEY")
|
| 63 |
+
self.jina_api_key = jina_api_key or os.getenv("JINA_API_KEY")
|
| 64 |
+
self.embedding_model = embedding_model
|
| 65 |
+
|
| 66 |
+
if not self.supabase_url or not self.supabase_key:
|
| 67 |
+
raise ValueError("SUPABASE_URL and SUPABASE_KEY environment variables must be set")
|
| 68 |
+
|
| 69 |
+
if not self.jina_api_key:
|
| 70 |
+
raise ValueError("JINA_API_KEY environment variable must be set")
|
| 71 |
+
|
| 72 |
+
# Initialize Supabase client
|
| 73 |
+
self.supabase: Client = create_client(self.supabase_url, self.supabase_key)
|
| 74 |
+
|
| 75 |
+
def _generate_embedding(self, text: str, task: str = "retrieval.query") -> List[float]:
|
| 76 |
+
"""
|
| 77 |
+
Generate embedding for text using Jina AI API
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
text: Text to embed
|
| 81 |
+
task: Task type - 'retrieval.query' for queries, 'retrieval.passage' for documents
|
| 82 |
+
|
| 83 |
+
Returns:
|
| 84 |
+
List of floats representing the embedding vector (1024 dimensions)
|
| 85 |
+
"""
|
| 86 |
+
try:
|
| 87 |
+
api_url = "https://api.jina.ai/v1/embeddings"
|
| 88 |
+
headers = {
|
| 89 |
+
"Content-Type": "application/json",
|
| 90 |
+
"Authorization": f"Bearer {self.jina_api_key}"
|
| 91 |
+
}
|
| 92 |
+
payload = {
|
| 93 |
+
"model": self.embedding_model,
|
| 94 |
+
"task": task,
|
| 95 |
+
"input": [text]
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
|
| 99 |
+
|
| 100 |
+
if response.status_code != 200:
|
| 101 |
+
raise Exception(f"Jina API returned status {response.status_code}: {response.text}")
|
| 102 |
+
|
| 103 |
+
result = response.json()
|
| 104 |
+
|
| 105 |
+
if isinstance(result, dict) and 'data' in result:
|
| 106 |
+
return result['data'][0]['embedding']
|
| 107 |
+
|
| 108 |
+
raise Exception("Unexpected response format from Jina API")
|
| 109 |
+
|
| 110 |
+
except Exception as e:
|
| 111 |
+
raise Exception(f"Error generating embedding: {str(e)}")
|
| 112 |
+
|
| 113 |
+
def similarity_search(
|
| 114 |
+
self,
|
| 115 |
+
query: str,
|
| 116 |
+
k: int = 10,
|
| 117 |
+
match_threshold: float = 0.7
|
| 118 |
+
) -> List[TranscriptChunk]:
|
| 119 |
+
"""
|
| 120 |
+
Perform similarity search on the transcript database (Tab 1: Topic Search)
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
query: Search query
|
| 124 |
+
k: Number of results to return
|
| 125 |
+
match_threshold: Minimum similarity threshold (0.0 to 1.0)
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
List of TranscriptChunk objects with relevant transcript chunks
|
| 129 |
+
"""
|
| 130 |
+
query_embedding = self._generate_embedding(query, task="retrieval.query")
|
| 131 |
+
|
| 132 |
+
try:
|
| 133 |
+
response = self.supabase.rpc(
|
| 134 |
+
'match_transcripts',
|
| 135 |
+
{
|
| 136 |
+
'query_embedding': query_embedding,
|
| 137 |
+
'match_threshold': match_threshold,
|
| 138 |
+
'match_count': k
|
| 139 |
+
}
|
| 140 |
+
).execute()
|
| 141 |
+
|
| 142 |
+
chunks = []
|
| 143 |
+
for item in response.data:
|
| 144 |
+
chunk = TranscriptChunk(
|
| 145 |
+
chunk_text=item.get('chunk_text') or '',
|
| 146 |
+
metadata={
|
| 147 |
+
'video_id': item.get('video_id'),
|
| 148 |
+
'video_url': item.get('video_url'),
|
| 149 |
+
'title': item.get('title', ''),
|
| 150 |
+
'chunk_index': item.get('chunk_index'),
|
| 151 |
+
'total_chunks': item.get('total_chunks'),
|
| 152 |
+
'similarity': item.get('similarity', 0.0)
|
| 153 |
+
}
|
| 154 |
+
)
|
| 155 |
+
chunks.append(chunk)
|
| 156 |
+
|
| 157 |
+
return chunks
|
| 158 |
+
|
| 159 |
+
except Exception as e:
|
| 160 |
+
raise Exception(f"Error performing similarity search: {str(e)}")
|
| 161 |
+
|
| 162 |
+
def get_video_chunks(self, video_id: str) -> List[TranscriptChunk]:
|
| 163 |
+
"""
|
| 164 |
+
Fetch all chunks for a specific video
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
video_id: YouTube video ID
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
List of TranscriptChunk objects ordered by chunk_index
|
| 171 |
+
"""
|
| 172 |
+
try:
|
| 173 |
+
response = self.supabase.from_('johnny_transcripts') \
|
| 174 |
+
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
|
| 175 |
+
.eq('video_id', video_id) \
|
| 176 |
+
.order('chunk_index') \
|
| 177 |
+
.execute()
|
| 178 |
+
|
| 179 |
+
chunks = []
|
| 180 |
+
for item in response.data:
|
| 181 |
+
chunk = TranscriptChunk(
|
| 182 |
+
chunk_text=item.get('chunk_text') or '',
|
| 183 |
+
metadata={
|
| 184 |
+
'video_id': item.get('video_id'),
|
| 185 |
+
'video_url': item.get('video_url'),
|
| 186 |
+
'title': item.get('title', ''),
|
| 187 |
+
'chunk_index': item.get('chunk_index'),
|
| 188 |
+
'total_chunks': item.get('total_chunks'),
|
| 189 |
+
'similarity': 1.0
|
| 190 |
+
}
|
| 191 |
+
)
|
| 192 |
+
chunks.append(chunk)
|
| 193 |
+
|
| 194 |
+
return chunks
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
raise Exception(f"Error fetching video chunks: {str(e)}")
|
| 198 |
+
|
| 199 |
+
def get_random_diverse_chunks(self, n: int = 50) -> List[TranscriptChunk]:
|
| 200 |
+
"""
|
| 201 |
+
Fetch random chunks from different videos for style variety
|
| 202 |
+
|
| 203 |
+
Args:
|
| 204 |
+
n: Number of random chunks to fetch
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
List of TranscriptChunk objects from diverse videos
|
| 208 |
+
"""
|
| 209 |
+
try:
|
| 210 |
+
# Get all unique video IDs first
|
| 211 |
+
response = self.supabase.from_('johnny_transcripts') \
|
| 212 |
+
.select('video_id') \
|
| 213 |
+
.execute()
|
| 214 |
+
|
| 215 |
+
video_ids = list(set(item['video_id'] for item in response.data if item.get('video_id')))
|
| 216 |
+
|
| 217 |
+
if not video_ids:
|
| 218 |
+
return []
|
| 219 |
+
|
| 220 |
+
# Sample from different videos to ensure diversity
|
| 221 |
+
chunks = []
|
| 222 |
+
chunks_per_video = max(1, n // len(video_ids)) if video_ids else n
|
| 223 |
+
|
| 224 |
+
# Shuffle video IDs for randomness
|
| 225 |
+
random.shuffle(video_ids)
|
| 226 |
+
|
| 227 |
+
for video_id in video_ids[:min(len(video_ids), n)]:
|
| 228 |
+
try:
|
| 229 |
+
# Get random chunks from this video
|
| 230 |
+
video_response = self.supabase.from_('johnny_transcripts') \
|
| 231 |
+
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
|
| 232 |
+
.eq('video_id', video_id) \
|
| 233 |
+
.limit(chunks_per_video) \
|
| 234 |
+
.execute()
|
| 235 |
+
|
| 236 |
+
for item in video_response.data:
|
| 237 |
+
chunk = TranscriptChunk(
|
| 238 |
+
chunk_text=item.get('chunk_text') or '',
|
| 239 |
+
metadata={
|
| 240 |
+
'video_id': item.get('video_id'),
|
| 241 |
+
'video_url': item.get('video_url'),
|
| 242 |
+
'title': item.get('title', ''),
|
| 243 |
+
'chunk_index': item.get('chunk_index'),
|
| 244 |
+
'total_chunks': item.get('total_chunks'),
|
| 245 |
+
'similarity': 0.0 # Random selection, no similarity score
|
| 246 |
+
}
|
| 247 |
+
)
|
| 248 |
+
chunks.append(chunk)
|
| 249 |
+
|
| 250 |
+
if len(chunks) >= n:
|
| 251 |
+
break
|
| 252 |
+
|
| 253 |
+
except Exception:
|
| 254 |
+
continue
|
| 255 |
+
|
| 256 |
+
return chunks[:n]
|
| 257 |
+
|
| 258 |
+
except Exception as e:
|
| 259 |
+
raise Exception(f"Error fetching random chunks: {str(e)}")
|
| 260 |
+
|
| 261 |
+
def get_bulk_style_context(
|
| 262 |
+
self,
|
| 263 |
+
topic_query: str,
|
| 264 |
+
max_chunks: int = 100,
|
| 265 |
+
topic_relevant_ratio: float = 0.3
|
| 266 |
+
) -> List[TranscriptChunk]:
|
| 267 |
+
"""
|
| 268 |
+
Retrieve maximum context from knowledge base for script generation (Tab 2)
|
| 269 |
+
|
| 270 |
+
This method combines:
|
| 271 |
+
1. Topic-relevant chunks (found via similarity search)
|
| 272 |
+
2. Diverse random samples from across the archive
|
| 273 |
+
|
| 274 |
+
The entire knowledge base serves as the style reference.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
topic_query: User's topic/bullet points to find relevant content
|
| 278 |
+
max_chunks: Maximum number of chunks to retrieve
|
| 279 |
+
topic_relevant_ratio: Ratio of chunks that should be topic-relevant (0.0 to 1.0)
|
| 280 |
+
|
| 281 |
+
Returns:
|
| 282 |
+
List of TranscriptChunk objects (topic-relevant + diverse samples)
|
| 283 |
+
"""
|
| 284 |
+
topic_relevant_count = int(max_chunks * topic_relevant_ratio)
|
| 285 |
+
diverse_count = max_chunks - topic_relevant_count
|
| 286 |
+
|
| 287 |
+
# Get topic-relevant chunks
|
| 288 |
+
topic_chunks = self.similarity_search(
|
| 289 |
+
query=topic_query,
|
| 290 |
+
k=topic_relevant_count,
|
| 291 |
+
match_threshold=0.3 # Lower threshold to get more results
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# Get diverse random chunks for style variety
|
| 295 |
+
diverse_chunks = self.get_random_diverse_chunks(n=diverse_count)
|
| 296 |
+
|
| 297 |
+
# Combine and deduplicate by video_id + chunk_index
|
| 298 |
+
seen = set()
|
| 299 |
+
combined = []
|
| 300 |
+
|
| 301 |
+
for chunk in topic_chunks + diverse_chunks:
|
| 302 |
+
key = (chunk.video_id, chunk.chunk_index)
|
| 303 |
+
if key not in seen:
|
| 304 |
+
seen.add(key)
|
| 305 |
+
combined.append(chunk)
|
| 306 |
+
|
| 307 |
+
return combined[:max_chunks]
|
| 308 |
+
|
| 309 |
+
def get_all_chunks(self, limit: int = 500) -> List[TranscriptChunk]:
|
| 310 |
+
"""
|
| 311 |
+
Fetch all chunks from the database (up to limit)
|
| 312 |
+
|
| 313 |
+
Args:
|
| 314 |
+
limit: Maximum number of chunks to fetch
|
| 315 |
+
|
| 316 |
+
Returns:
|
| 317 |
+
List of TranscriptChunk objects
|
| 318 |
+
"""
|
| 319 |
+
try:
|
| 320 |
+
response = self.supabase.from_('johnny_transcripts') \
|
| 321 |
+
.select('video_id, video_url, title, chunk_text, chunk_index, total_chunks') \
|
| 322 |
+
.limit(limit) \
|
| 323 |
+
.execute()
|
| 324 |
+
|
| 325 |
+
chunks = []
|
| 326 |
+
for item in response.data:
|
| 327 |
+
chunk = TranscriptChunk(
|
| 328 |
+
chunk_text=item.get('chunk_text') or '',
|
| 329 |
+
metadata={
|
| 330 |
+
'video_id': item.get('video_id'),
|
| 331 |
+
'video_url': item.get('video_url'),
|
| 332 |
+
'title': item.get('title', ''),
|
| 333 |
+
'chunk_index': item.get('chunk_index'),
|
| 334 |
+
'total_chunks': item.get('total_chunks'),
|
| 335 |
+
'similarity': 0.0
|
| 336 |
+
}
|
| 337 |
+
)
|
| 338 |
+
chunks.append(chunk)
|
| 339 |
+
|
| 340 |
+
return chunks
|
| 341 |
+
|
| 342 |
+
except Exception as e:
|
| 343 |
+
raise Exception(f"Error fetching all chunks: {str(e)}")
|
| 344 |
+
|
| 345 |
+
def format_results_for_display(self, chunks: List[TranscriptChunk]) -> str:
|
| 346 |
+
"""
|
| 347 |
+
Format search results for Tab 1 display
|
| 348 |
+
|
| 349 |
+
Args:
|
| 350 |
+
chunks: List of TranscriptChunk objects
|
| 351 |
+
|
| 352 |
+
Returns:
|
| 353 |
+
Formatted markdown string for display
|
| 354 |
+
"""
|
| 355 |
+
if not chunks:
|
| 356 |
+
return "No matching content found."
|
| 357 |
+
|
| 358 |
+
# Group by video
|
| 359 |
+
videos = {}
|
| 360 |
+
for chunk in chunks:
|
| 361 |
+
video_id = chunk.video_id
|
| 362 |
+
if video_id not in videos:
|
| 363 |
+
videos[video_id] = {
|
| 364 |
+
'title': chunk.title,
|
| 365 |
+
'url': chunk.video_url,
|
| 366 |
+
'chunks': [],
|
| 367 |
+
'max_similarity': 0.0
|
| 368 |
+
}
|
| 369 |
+
videos[video_id]['chunks'].append(chunk)
|
| 370 |
+
videos[video_id]['max_similarity'] = max(
|
| 371 |
+
videos[video_id]['max_similarity'],
|
| 372 |
+
chunk.similarity
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Sort by max similarity
|
| 376 |
+
sorted_videos = sorted(
|
| 377 |
+
videos.items(),
|
| 378 |
+
key=lambda x: x[1]['max_similarity'],
|
| 379 |
+
reverse=True
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# Format output
|
| 383 |
+
output = []
|
| 384 |
+
for video_id, data in sorted_videos:
|
| 385 |
+
similarity_pct = int(data['max_similarity'] * 100)
|
| 386 |
+
output.append(f"### [{data['title']}]({data['url']})")
|
| 387 |
+
output.append(f"**Relevance:** {similarity_pct}%\n")
|
| 388 |
+
|
| 389 |
+
# Show top excerpt
|
| 390 |
+
top_chunk = max(data['chunks'], key=lambda c: c.similarity)
|
| 391 |
+
excerpt = top_chunk.chunk_text[:500] + "..." if len(top_chunk.chunk_text) > 500 else top_chunk.chunk_text
|
| 392 |
+
output.append(f"> {excerpt}\n")
|
| 393 |
+
|
| 394 |
+
return "\n".join(output)
|
| 395 |
+
|
| 396 |
+
def format_context_for_llm(self, chunks: List[TranscriptChunk]) -> str:
|
| 397 |
+
"""
|
| 398 |
+
Format chunks as context for LLM script generation (Tab 2)
|
| 399 |
+
|
| 400 |
+
Args:
|
| 401 |
+
chunks: List of TranscriptChunk objects
|
| 402 |
+
|
| 403 |
+
Returns:
|
| 404 |
+
Formatted string with transcript excerpts for LLM context
|
| 405 |
+
"""
|
| 406 |
+
if not chunks:
|
| 407 |
+
return ""
|
| 408 |
+
|
| 409 |
+
formatted = []
|
| 410 |
+
for i, chunk in enumerate(chunks, 1):
|
| 411 |
+
formatted.append(f"[Excerpt {i} - {chunk.title}]\n{chunk.chunk_text}")
|
| 412 |
+
|
| 413 |
+
return "\n\n---\n\n".join(formatted)
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
def create_vectorstore() -> TranscriptVectorStore:
|
| 417 |
+
"""Factory function to create and return a configured vector store"""
|
| 418 |
+
return TranscriptVectorStore()
|