Spaces:
Running
Running
Tom
Claude
commited on
Commit
·
9384880
1
Parent(s):
1ac873b
feat: replace script generation with tone checker, improve archive search
Browse files- Tab 1: Tiered search results (Direct Matches >= 0.6, Related Content 0.3-0.6)
- Tab 2: New Tone Checker analyzes scripts against Johnny's style (0-100 score)
- Reduced query expansion terms for more relevant results
- Added module-level demo for gradio CLI compatibility
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
- app.py +105 -86
- src/prompts.py +79 -21
- src/vectorstore.py +69 -0
app.py
CHANGED
|
@@ -15,8 +15,10 @@ from src.llm_client import InferenceProviderClient, create_llm_client
|
|
| 15 |
from src.prompts import (
|
| 16 |
TOPIC_SEARCH_SYSTEM_PROMPT,
|
| 17 |
SCRIPT_SYSTEM_PROMPT,
|
|
|
|
| 18 |
get_topic_search_prompt,
|
| 19 |
-
get_script_prompt
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
# Load environment variables
|
|
@@ -53,13 +55,13 @@ def expand_query(query: str) -> list:
|
|
| 53 |
llm = get_llm_client()
|
| 54 |
prompt = f"""Given this search query about Johnny Harris video topics: "{query}"
|
| 55 |
|
| 56 |
-
Generate 3
|
| 57 |
-
|
| 58 |
Return ONLY the terms, one per line, no numbering or explanation."""
|
| 59 |
|
| 60 |
-
response = llm.generate(prompt, max_tokens=
|
| 61 |
terms = [t.strip() for t in response.strip().split('\n') if t.strip()]
|
| 62 |
-
return [query] + terms[:
|
| 63 |
except Exception:
|
| 64 |
return [query]
|
| 65 |
|
|
@@ -67,7 +69,7 @@ Return ONLY the terms, one per line, no numbering or explanation."""
|
|
| 67 |
def search_topics(query: str, progress=gr.Progress()):
|
| 68 |
"""
|
| 69 |
Generator that yields progress updates during search.
|
| 70 |
-
Uses
|
| 71 |
|
| 72 |
Args:
|
| 73 |
query: User's topic or question
|
|
@@ -88,104 +90,124 @@ def search_topics(query: str, progress=gr.Progress()):
|
|
| 88 |
yield "Expanding search query..."
|
| 89 |
search_terms = expand_query(query.strip())
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
| 93 |
total_terms = len(search_terms)
|
| 94 |
for i, term in enumerate(search_terms):
|
| 95 |
pct = 0.2 + (0.5 * (i / total_terms))
|
| 96 |
progress(pct, desc=f"Searching: {term[:30]}...")
|
| 97 |
yield f"Searching: {term[:30]}..."
|
| 98 |
-
|
|
|
|
| 99 |
query=term,
|
| 100 |
-
|
| 101 |
-
|
|
|
|
| 102 |
)
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
progress(0.8, desc="Processing results...")
|
| 106 |
yield "Processing results..."
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
if r.title not in seen or r.similarity > seen[r.title].similarity:
|
| 112 |
-
seen[r.title] = r
|
| 113 |
|
| 114 |
-
|
| 115 |
-
unique_results = sorted(seen.values(), key=lambda x: x.similarity, reverse=True)[:15]
|
| 116 |
-
|
| 117 |
-
if not unique_results:
|
| 118 |
yield f"No matching content found for: **{query}**\n\nThis topic may not have been covered yet, or try rephrasing your search."
|
| 119 |
return
|
| 120 |
|
| 121 |
-
# Format
|
| 122 |
-
|
| 123 |
-
|
| 124 |
search_info = f"*Searched: {', '.join(search_terms)}*\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
progress(1.0, desc="Done!")
|
| 126 |
-
yield
|
| 127 |
|
| 128 |
except Exception as e:
|
| 129 |
yield f"Error searching: {str(e)}"
|
| 130 |
|
| 131 |
|
| 132 |
# =============================================================================
|
| 133 |
-
# TAB 2:
|
| 134 |
# =============================================================================
|
| 135 |
|
| 136 |
-
def
|
| 137 |
"""
|
| 138 |
-
Generator that yields progress updates during
|
| 139 |
|
| 140 |
Args:
|
| 141 |
-
|
| 142 |
-
max_context_chunks: Number of style reference chunks to use
|
| 143 |
progress: Gradio progress tracker
|
| 144 |
|
| 145 |
Yields:
|
| 146 |
-
Progress status messages, then final
|
| 147 |
"""
|
| 148 |
-
if not
|
| 149 |
-
yield "Please enter
|
| 150 |
return
|
| 151 |
|
| 152 |
try:
|
| 153 |
progress(0.05, desc="Gathering style references...")
|
| 154 |
-
yield "Gathering style references..."
|
| 155 |
vs = get_vectorstore()
|
| 156 |
llm = get_llm_client()
|
| 157 |
|
| 158 |
progress(0.15, desc="Searching knowledge base...")
|
| 159 |
yield "Searching knowledge base for style references..."
|
| 160 |
context_chunks = vs.get_bulk_style_context(
|
| 161 |
-
topic_query=
|
| 162 |
-
max_chunks=
|
| 163 |
-
topic_relevant_ratio=0.
|
| 164 |
)
|
| 165 |
|
| 166 |
progress(0.35, desc="Preparing context...")
|
| 167 |
-
yield "Preparing context for
|
| 168 |
context = vs.format_context_for_llm(context_chunks) if context_chunks else ""
|
| 169 |
|
| 170 |
progress(0.5, desc="Building prompt...")
|
| 171 |
-
yield "Building prompt..."
|
| 172 |
-
prompt_template =
|
| 173 |
prompt = prompt_template.format(
|
| 174 |
-
|
| 175 |
context=context
|
| 176 |
)
|
| 177 |
|
| 178 |
-
progress(0.7, desc="
|
| 179 |
-
yield "
|
| 180 |
-
|
| 181 |
prompt=prompt,
|
| 182 |
-
system_prompt=
|
| 183 |
-
temperature=0.
|
| 184 |
-
max_tokens=
|
| 185 |
)
|
| 186 |
|
| 187 |
progress(1.0, desc="Complete!")
|
| 188 |
-
yield
|
| 189 |
|
| 190 |
except Exception as e:
|
| 191 |
yield f"**Error:** {str(e)}"
|
|
@@ -250,49 +272,45 @@ def create_app():
|
|
| 250 |
)
|
| 251 |
|
| 252 |
# =================================================================
|
| 253 |
-
# TAB 2:
|
| 254 |
# =================================================================
|
| 255 |
-
with gr.TabItem("
|
| 256 |
gr.Markdown("""
|
| 257 |
-
###
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
""")
|
| 262 |
|
| 263 |
with gr.Row():
|
| 264 |
with gr.Column():
|
| 265 |
-
|
| 266 |
-
label="Your
|
| 267 |
-
placeholder="""
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
- Angle: The hidden infrastructure we never think about""",
|
| 276 |
-
lines=12
|
| 277 |
)
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
inputs=[notes_input, context_slider],
|
| 295 |
-
outputs=[script_output],
|
| 296 |
show_progress="full"
|
| 297 |
)
|
| 298 |
|
|
@@ -308,11 +326,12 @@ def create_app():
|
|
| 308 |
# MAIN
|
| 309 |
# =============================================================================
|
| 310 |
|
|
|
|
|
|
|
|
|
|
| 311 |
if __name__ == "__main__":
|
| 312 |
-
|
| 313 |
-
app.launch(
|
| 314 |
server_name="0.0.0.0",
|
| 315 |
server_port=7860,
|
| 316 |
-
share=False
|
| 317 |
-
theme="soft"
|
| 318 |
)
|
|
|
|
| 15 |
from src.prompts import (
|
| 16 |
TOPIC_SEARCH_SYSTEM_PROMPT,
|
| 17 |
SCRIPT_SYSTEM_PROMPT,
|
| 18 |
+
TONE_CHECK_SYSTEM_PROMPT,
|
| 19 |
get_topic_search_prompt,
|
| 20 |
+
get_script_prompt,
|
| 21 |
+
get_tone_check_prompt
|
| 22 |
)
|
| 23 |
|
| 24 |
# Load environment variables
|
|
|
|
| 55 |
llm = get_llm_client()
|
| 56 |
prompt = f"""Given this search query about Johnny Harris video topics: "{query}"
|
| 57 |
|
| 58 |
+
Generate 2-3 closely related search terms that might find relevant videos.
|
| 59 |
+
Focus on: the core topic, key entities mentioned, and one closely related concept.
|
| 60 |
Return ONLY the terms, one per line, no numbering or explanation."""
|
| 61 |
|
| 62 |
+
response = llm.generate(prompt, max_tokens=60, temperature=0.3)
|
| 63 |
terms = [t.strip() for t in response.strip().split('\n') if t.strip()]
|
| 64 |
+
return [query] + terms[:3]
|
| 65 |
except Exception:
|
| 66 |
return [query]
|
| 67 |
|
|
|
|
| 69 |
def search_topics(query: str, progress=gr.Progress()):
|
| 70 |
"""
|
| 71 |
Generator that yields progress updates during search.
|
| 72 |
+
Uses tiered results: direct matches and related content.
|
| 73 |
|
| 74 |
Args:
|
| 75 |
query: User's topic or question
|
|
|
|
| 90 |
yield "Expanding search query..."
|
| 91 |
search_terms = expand_query(query.strip())
|
| 92 |
|
| 93 |
+
# Collect tiered results from all search terms
|
| 94 |
+
all_direct = []
|
| 95 |
+
all_related = []
|
| 96 |
+
seen_videos = set()
|
| 97 |
+
|
| 98 |
total_terms = len(search_terms)
|
| 99 |
for i, term in enumerate(search_terms):
|
| 100 |
pct = 0.2 + (0.5 * (i / total_terms))
|
| 101 |
progress(pct, desc=f"Searching: {term[:30]}...")
|
| 102 |
yield f"Searching: {term[:30]}..."
|
| 103 |
+
|
| 104 |
+
direct, related = vs.tiered_similarity_search(
|
| 105 |
query=term,
|
| 106 |
+
direct_threshold=0.6,
|
| 107 |
+
related_threshold=0.3,
|
| 108 |
+
max_per_tier=10
|
| 109 |
)
|
| 110 |
+
|
| 111 |
+
# Add results, deduplicating by video
|
| 112 |
+
for chunk in direct:
|
| 113 |
+
if chunk.video_id not in seen_videos:
|
| 114 |
+
seen_videos.add(chunk.video_id)
|
| 115 |
+
all_direct.append(chunk)
|
| 116 |
+
|
| 117 |
+
for chunk in related:
|
| 118 |
+
if chunk.video_id not in seen_videos:
|
| 119 |
+
seen_videos.add(chunk.video_id)
|
| 120 |
+
all_related.append(chunk)
|
| 121 |
|
| 122 |
progress(0.8, desc="Processing results...")
|
| 123 |
yield "Processing results..."
|
| 124 |
|
| 125 |
+
# Sort each tier by similarity
|
| 126 |
+
all_direct = sorted(all_direct, key=lambda x: x.similarity, reverse=True)[:10]
|
| 127 |
+
all_related = sorted(all_related, key=lambda x: x.similarity, reverse=True)[:10]
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
if not all_direct and not all_related:
|
|
|
|
|
|
|
|
|
|
| 130 |
yield f"No matching content found for: **{query}**\n\nThis topic may not have been covered yet, or try rephrasing your search."
|
| 131 |
return
|
| 132 |
|
| 133 |
+
# Format tiered output
|
| 134 |
+
output_parts = []
|
|
|
|
| 135 |
search_info = f"*Searched: {', '.join(search_terms)}*\n\n"
|
| 136 |
+
output_parts.append(f"## Search Results for: \"{query}\"\n\n{search_info}")
|
| 137 |
+
|
| 138 |
+
if all_direct:
|
| 139 |
+
output_parts.append("### Direct Matches\nVideos that directly cover this topic:\n")
|
| 140 |
+
output_parts.append(vs.format_results_for_display(all_direct))
|
| 141 |
+
|
| 142 |
+
if all_related:
|
| 143 |
+
if all_direct:
|
| 144 |
+
output_parts.append("\n---\n")
|
| 145 |
+
output_parts.append("### Related Content\nVideos that touch on similar themes:\n")
|
| 146 |
+
output_parts.append(vs.format_results_for_display(all_related))
|
| 147 |
+
|
| 148 |
progress(1.0, desc="Done!")
|
| 149 |
+
yield "\n".join(output_parts)
|
| 150 |
|
| 151 |
except Exception as e:
|
| 152 |
yield f"Error searching: {str(e)}"
|
| 153 |
|
| 154 |
|
| 155 |
# =============================================================================
|
| 156 |
+
# TAB 2: TONE CHECKER
|
| 157 |
# =============================================================================
|
| 158 |
|
| 159 |
+
def check_script_tone(user_script: str, progress=gr.Progress()):
|
| 160 |
"""
|
| 161 |
+
Generator that yields progress updates during tone analysis.
|
| 162 |
|
| 163 |
Args:
|
| 164 |
+
user_script: User's script to analyze
|
|
|
|
| 165 |
progress: Gradio progress tracker
|
| 166 |
|
| 167 |
Yields:
|
| 168 |
+
Progress status messages, then final tone analysis
|
| 169 |
"""
|
| 170 |
+
if not user_script or not user_script.strip():
|
| 171 |
+
yield "Please enter a script to analyze."
|
| 172 |
return
|
| 173 |
|
| 174 |
try:
|
| 175 |
progress(0.05, desc="Gathering style references...")
|
| 176 |
+
yield "Gathering style references from Johnny's archive..."
|
| 177 |
vs = get_vectorstore()
|
| 178 |
llm = get_llm_client()
|
| 179 |
|
| 180 |
progress(0.15, desc="Searching knowledge base...")
|
| 181 |
yield "Searching knowledge base for style references..."
|
| 182 |
context_chunks = vs.get_bulk_style_context(
|
| 183 |
+
topic_query=user_script.strip()[:500], # Use first 500 chars as topic hint
|
| 184 |
+
max_chunks=50,
|
| 185 |
+
topic_relevant_ratio=0.4
|
| 186 |
)
|
| 187 |
|
| 188 |
progress(0.35, desc="Preparing context...")
|
| 189 |
+
yield "Preparing context for analysis..."
|
| 190 |
context = vs.format_context_for_llm(context_chunks) if context_chunks else ""
|
| 191 |
|
| 192 |
progress(0.5, desc="Building prompt...")
|
| 193 |
+
yield "Building analysis prompt..."
|
| 194 |
+
prompt_template = get_tone_check_prompt()
|
| 195 |
prompt = prompt_template.format(
|
| 196 |
+
user_script=user_script.strip(),
|
| 197 |
context=context
|
| 198 |
)
|
| 199 |
|
| 200 |
+
progress(0.7, desc="Analyzing tone (30-60 seconds)...")
|
| 201 |
+
yield "Analyzing script tone (this may take 30-60 seconds)..."
|
| 202 |
+
analysis = llm.generate(
|
| 203 |
prompt=prompt,
|
| 204 |
+
system_prompt=TONE_CHECK_SYSTEM_PROMPT,
|
| 205 |
+
temperature=0.3,
|
| 206 |
+
max_tokens=1500
|
| 207 |
)
|
| 208 |
|
| 209 |
progress(1.0, desc="Complete!")
|
| 210 |
+
yield analysis.strip()
|
| 211 |
|
| 212 |
except Exception as e:
|
| 213 |
yield f"**Error:** {str(e)}"
|
|
|
|
| 272 |
)
|
| 273 |
|
| 274 |
# =================================================================
|
| 275 |
+
# TAB 2: TONE CHECKER
|
| 276 |
# =================================================================
|
| 277 |
+
with gr.TabItem("Tone Checker"):
|
| 278 |
gr.Markdown("""
|
| 279 |
+
### Check if your script matches Johnny's voice
|
| 280 |
|
| 281 |
+
Paste your script below to analyze how well it matches Johnny Harris's
|
| 282 |
+
signature style. Get a score and specific feedback on what works and what to improve.
|
| 283 |
""")
|
| 284 |
|
| 285 |
with gr.Row():
|
| 286 |
with gr.Column():
|
| 287 |
+
script_input = gr.Textbox(
|
| 288 |
+
label="Your Script",
|
| 289 |
+
placeholder="""Paste your script here...
|
| 290 |
+
|
| 291 |
+
Example:
|
| 292 |
+
There's this line on the map that most people have never heard of.
|
| 293 |
+
It's called the Durand Line, and it cuts right through the middle of a people
|
| 294 |
+
who have lived in these mountains for thousands of years.
|
| 295 |
+
The thing is, this line wasn't drawn by the people who live here...""",
|
| 296 |
+
lines=15
|
|
|
|
|
|
|
| 297 |
)
|
| 298 |
|
| 299 |
+
check_btn = gr.Button("Check Tone", variant="primary", size="lg")
|
| 300 |
+
|
| 301 |
+
tone_output = gr.Markdown(label="Tone Analysis", value="Tone analysis will appear here...")
|
| 302 |
+
|
| 303 |
+
check_btn.click(
|
| 304 |
+
fn=check_script_tone,
|
| 305 |
+
inputs=[script_input],
|
| 306 |
+
outputs=[tone_output],
|
| 307 |
+
show_progress="full"
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
script_input.submit(
|
| 311 |
+
fn=check_script_tone,
|
| 312 |
+
inputs=[script_input],
|
| 313 |
+
outputs=[tone_output],
|
|
|
|
|
|
|
| 314 |
show_progress="full"
|
| 315 |
)
|
| 316 |
|
|
|
|
| 326 |
# MAIN
|
| 327 |
# =============================================================================
|
| 328 |
|
| 329 |
+
# Create app at module level for `gradio app.py` CLI compatibility
|
| 330 |
+
demo = create_app()
|
| 331 |
+
|
| 332 |
if __name__ == "__main__":
|
| 333 |
+
demo.launch(
|
|
|
|
| 334 |
server_name="0.0.0.0",
|
| 335 |
server_port=7860,
|
| 336 |
+
share=False
|
|
|
|
| 337 |
)
|
src/prompts.py
CHANGED
|
@@ -1,6 +1,32 @@
|
|
| 1 |
"""Prompt templates for Johnny Harris Script Assistant"""
|
| 2 |
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
# =============================================================================
|
| 5 |
# TAB 1: TOPIC SEARCH PROMPTS
|
| 6 |
# =============================================================================
|
|
@@ -32,30 +58,11 @@ Keep your response concise and actionable."""
|
|
| 32 |
# TAB 2: SCRIPT PRODUCTION PROMPTS
|
| 33 |
# =============================================================================
|
| 34 |
|
| 35 |
-
SCRIPT_SYSTEM_PROMPT = """You are a script writing assistant that has deeply studied Johnny Harris's style.
|
| 36 |
|
| 37 |
JOHNNY'S VOICE CHARACTERISTICS (derived from extensive analysis of his work):
|
| 38 |
|
| 39 |
-
|
| 40 |
-
- Opens with a hook - a provocative question, surprising fact, or personal moment
|
| 41 |
-
- Builds tension through questions: "But here's the thing...", "So why does this matter?"
|
| 42 |
-
- Uses the "zoom out" technique - starts specific, expands to bigger picture
|
| 43 |
-
- Weaves between personal story and broader research/data
|
| 44 |
-
- Ends with reflection or call to think differently
|
| 45 |
-
|
| 46 |
-
**Language Patterns:**
|
| 47 |
-
- Direct address: "I want to show you something", "Let me explain"
|
| 48 |
-
- Conversational markers: "the thing is...", "here's what's interesting...", "and this is where it gets wild"
|
| 49 |
-
- Short punchy sentences followed by longer explanatory ones
|
| 50 |
-
- Rhetorical questions that pull the viewer in
|
| 51 |
-
- Admits uncertainty: "I don't fully understand this yet", "I'm still wrestling with this"
|
| 52 |
-
|
| 53 |
-
**Tone:**
|
| 54 |
-
- Curious and genuinely excited about learning
|
| 55 |
-
- Slightly irreverent but deeply researched
|
| 56 |
-
- Personal without being self-indulgent
|
| 57 |
-
- Acknowledges complexity without being academic
|
| 58 |
-
- Finds the human story in geopolitics/data
|
| 59 |
|
| 60 |
Your job is to transform the user's bullet points and notes into a script draft that authentically sounds like Johnny wrote it. Study the provided transcript excerpts carefully - they are your primary style reference. Do not include visual cues, bracketed notes, or stage directions—return narrative script text only.
|
| 61 |
|
|
@@ -67,6 +74,47 @@ Your job is to transform the user's bullet points and notes into a script draft
|
|
| 67 |
- End with a memorable takeaway or question"""
|
| 68 |
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
SCRIPT_PROMPT_TEMPLATE = """USER'S NOTES AND BULLET POINTS:
|
| 71 |
{user_input}
|
| 72 |
|
|
@@ -114,6 +162,11 @@ SCRIPT_PROMPT = SimplePromptTemplate(
|
|
| 114 |
input_variables=["user_input", "context"]
|
| 115 |
)
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
def get_topic_search_prompt() -> SimplePromptTemplate:
|
| 119 |
"""Get the topic search prompt template"""
|
|
@@ -123,3 +176,8 @@ def get_topic_search_prompt() -> SimplePromptTemplate:
|
|
| 123 |
def get_script_prompt() -> SimplePromptTemplate:
|
| 124 |
"""Get the script generation prompt template"""
|
| 125 |
return SCRIPT_PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Prompt templates for Johnny Harris Script Assistant"""
|
| 2 |
|
| 3 |
|
| 4 |
+
# =============================================================================
|
| 5 |
+
# JOHNNY'S VOICE CHARACTERISTICS (shared reference)
|
| 6 |
+
# =============================================================================
|
| 7 |
+
|
| 8 |
+
JOHNNY_VOICE_GUIDE = """**Narrative Structure:**
|
| 9 |
+
- Opens with a hook - a provocative question, surprising fact, or personal moment
|
| 10 |
+
- Builds tension through questions: "But here's the thing...", "So why does this matter?"
|
| 11 |
+
- Uses the "zoom out" technique - starts specific, expands to bigger picture
|
| 12 |
+
- Weaves between personal story and broader research/data
|
| 13 |
+
- Ends with reflection or call to think differently
|
| 14 |
+
|
| 15 |
+
**Language Patterns:**
|
| 16 |
+
- Direct address: "I want to show you something", "Let me explain"
|
| 17 |
+
- Conversational markers: "the thing is...", "here's what's interesting...", "and this is where it gets wild"
|
| 18 |
+
- Short punchy sentences followed by longer explanatory ones
|
| 19 |
+
- Rhetorical questions that pull the viewer in
|
| 20 |
+
- Admits uncertainty: "I don't fully understand this yet", "I'm still wrestling with this"
|
| 21 |
+
|
| 22 |
+
**Tone:**
|
| 23 |
+
- Curious and genuinely excited about learning
|
| 24 |
+
- Slightly irreverent but deeply researched
|
| 25 |
+
- Personal without being self-indulgent
|
| 26 |
+
- Acknowledges complexity without being academic
|
| 27 |
+
- Finds the human story in geopolitics/data"""
|
| 28 |
+
|
| 29 |
+
|
| 30 |
# =============================================================================
|
| 31 |
# TAB 1: TOPIC SEARCH PROMPTS
|
| 32 |
# =============================================================================
|
|
|
|
| 58 |
# TAB 2: SCRIPT PRODUCTION PROMPTS
|
| 59 |
# =============================================================================
|
| 60 |
|
| 61 |
+
SCRIPT_SYSTEM_PROMPT = f"""You are a script writing assistant that has deeply studied Johnny Harris's style.
|
| 62 |
|
| 63 |
JOHNNY'S VOICE CHARACTERISTICS (derived from extensive analysis of his work):
|
| 64 |
|
| 65 |
+
{JOHNNY_VOICE_GUIDE}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
Your job is to transform the user's bullet points and notes into a script draft that authentically sounds like Johnny wrote it. Study the provided transcript excerpts carefully - they are your primary style reference. Do not include visual cues, bracketed notes, or stage directions—return narrative script text only.
|
| 68 |
|
|
|
|
| 74 |
- End with a memorable takeaway or question"""
|
| 75 |
|
| 76 |
|
| 77 |
+
# =============================================================================
|
| 78 |
+
# TAB 2: TONE CHECKER PROMPTS
|
| 79 |
+
# =============================================================================
|
| 80 |
+
|
| 81 |
+
TONE_CHECK_SYSTEM_PROMPT = f"""You analyze scripts to determine how well they match Johnny Harris's voice and style.
|
| 82 |
+
|
| 83 |
+
JOHNNY'S VOICE CHARACTERISTICS:
|
| 84 |
+
|
| 85 |
+
{JOHNNY_VOICE_GUIDE}
|
| 86 |
+
|
| 87 |
+
Your job is to:
|
| 88 |
+
1. Score the script from 0-100 on how well it matches Johnny's style
|
| 89 |
+
2. Identify specific elements that work well
|
| 90 |
+
3. Point out areas that don't match his voice with concrete suggestions
|
| 91 |
+
4. Reference the provided transcript excerpts as examples of his authentic style
|
| 92 |
+
|
| 93 |
+
Be constructive and specific. Quote the user's script when giving feedback."""
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
TONE_CHECK_PROMPT_TEMPLATE = """SCRIPT TO ANALYZE:
|
| 97 |
+
{user_script}
|
| 98 |
+
|
| 99 |
+
JOHNNY'S STYLE REFERENCE (transcript excerpts from his videos):
|
| 100 |
+
{context}
|
| 101 |
+
|
| 102 |
+
Analyze this script for how well it matches Johnny Harris's voice and style.
|
| 103 |
+
|
| 104 |
+
Provide your analysis in this exact format:
|
| 105 |
+
|
| 106 |
+
## Tone Analysis Score: [X]/100
|
| 107 |
+
|
| 108 |
+
### What Works Well
|
| 109 |
+
- [2-3 specific elements that match his style, with quoted examples from the script]
|
| 110 |
+
|
| 111 |
+
### Areas to Improve
|
| 112 |
+
- [2-3 specific suggestions, referencing examples from the transcript excerpts]
|
| 113 |
+
|
| 114 |
+
### Overall Assessment
|
| 115 |
+
[1-2 sentence summary of how well it matches and key adjustments needed]"""
|
| 116 |
+
|
| 117 |
+
|
| 118 |
SCRIPT_PROMPT_TEMPLATE = """USER'S NOTES AND BULLET POINTS:
|
| 119 |
{user_input}
|
| 120 |
|
|
|
|
| 162 |
input_variables=["user_input", "context"]
|
| 163 |
)
|
| 164 |
|
| 165 |
+
TONE_CHECK_PROMPT = SimplePromptTemplate(
|
| 166 |
+
template=TONE_CHECK_PROMPT_TEMPLATE,
|
| 167 |
+
input_variables=["user_script", "context"]
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
|
| 171 |
def get_topic_search_prompt() -> SimplePromptTemplate:
|
| 172 |
"""Get the topic search prompt template"""
|
|
|
|
| 176 |
def get_script_prompt() -> SimplePromptTemplate:
|
| 177 |
"""Get the script generation prompt template"""
|
| 178 |
return SCRIPT_PROMPT
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def get_tone_check_prompt() -> SimplePromptTemplate:
|
| 182 |
+
"""Get the tone check prompt template"""
|
| 183 |
+
return TONE_CHECK_PROMPT
|
src/vectorstore.py
CHANGED
|
@@ -159,6 +159,75 @@ class TranscriptVectorStore:
|
|
| 159 |
except Exception as e:
|
| 160 |
raise Exception(f"Error performing similarity search: {str(e)}")
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
def get_video_chunks(self, video_id: str) -> List[TranscriptChunk]:
|
| 163 |
"""
|
| 164 |
Fetch all chunks for a specific video
|
|
|
|
| 159 |
except Exception as e:
|
| 160 |
raise Exception(f"Error performing similarity search: {str(e)}")
|
| 161 |
|
| 162 |
+
def tiered_similarity_search(
|
| 163 |
+
self,
|
| 164 |
+
query: str,
|
| 165 |
+
direct_threshold: float = 0.6,
|
| 166 |
+
related_threshold: float = 0.3,
|
| 167 |
+
max_per_tier: int = 10
|
| 168 |
+
) -> tuple:
|
| 169 |
+
"""
|
| 170 |
+
Search with tiered results: direct matches and related content.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
query: Search query
|
| 174 |
+
direct_threshold: Minimum similarity for direct matches (default 0.6)
|
| 175 |
+
related_threshold: Minimum similarity for related content (default 0.3)
|
| 176 |
+
max_per_tier: Maximum results per tier
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Tuple of (direct_matches, related_content) - two separate lists
|
| 180 |
+
"""
|
| 181 |
+
query_embedding = self._generate_embedding(query, task="retrieval.query")
|
| 182 |
+
|
| 183 |
+
try:
|
| 184 |
+
# Get all results above the related threshold
|
| 185 |
+
response = self.supabase.rpc(
|
| 186 |
+
'match_transcripts',
|
| 187 |
+
{
|
| 188 |
+
'query_embedding': query_embedding,
|
| 189 |
+
'match_threshold': related_threshold,
|
| 190 |
+
'match_count': max_per_tier * 3 # Get more to filter
|
| 191 |
+
}
|
| 192 |
+
).execute()
|
| 193 |
+
|
| 194 |
+
direct_matches = []
|
| 195 |
+
related_content = []
|
| 196 |
+
seen_videos = set()
|
| 197 |
+
|
| 198 |
+
for item in response.data:
|
| 199 |
+
similarity = item.get('similarity', 0.0)
|
| 200 |
+
video_id = item.get('video_id')
|
| 201 |
+
|
| 202 |
+
# Deduplicate by video (keep highest similarity per video)
|
| 203 |
+
if video_id in seen_videos:
|
| 204 |
+
continue
|
| 205 |
+
seen_videos.add(video_id)
|
| 206 |
+
|
| 207 |
+
chunk = TranscriptChunk(
|
| 208 |
+
chunk_text=item.get('chunk_text') or '',
|
| 209 |
+
metadata={
|
| 210 |
+
'video_id': video_id,
|
| 211 |
+
'video_url': item.get('video_url'),
|
| 212 |
+
'title': item.get('title', ''),
|
| 213 |
+
'chunk_index': item.get('chunk_index'),
|
| 214 |
+
'total_chunks': item.get('total_chunks'),
|
| 215 |
+
'similarity': similarity
|
| 216 |
+
}
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
if similarity >= direct_threshold:
|
| 220 |
+
if len(direct_matches) < max_per_tier:
|
| 221 |
+
direct_matches.append(chunk)
|
| 222 |
+
elif similarity >= related_threshold:
|
| 223 |
+
if len(related_content) < max_per_tier:
|
| 224 |
+
related_content.append(chunk)
|
| 225 |
+
|
| 226 |
+
return (direct_matches, related_content)
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
raise Exception(f"Error performing tiered search: {str(e)}")
|
| 230 |
+
|
| 231 |
def get_video_chunks(self, video_id: str) -> List[TranscriptChunk]:
|
| 232 |
"""
|
| 233 |
Fetch all chunks for a specific video
|