Spaces:
Sleeping
Sleeping
File size: 2,425 Bytes
6466c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# OSINT Investigation Assistant - Environment Variables
# =============================================================================
# REQUIRED: Supabase Database Connection
# =============================================================================
# PostgreSQL connection string for your Supabase database
# Format: postgresql://[user]:[password]@[host]:[port]/[database]
# Get this from: Supabase Dashboard > Project Settings > Database > Connection String
SUPABASE_CONNECTION_STRING=postgresql://postgres:[YOUR-PASSWORD]@db.[PROJECT-REF].supabase.co:5432/postgres
# =============================================================================
# REQUIRED: Hugging Face API Token
# =============================================================================
# Get your token from: https://huggingface.co/settings/tokens
# This is used for Inference Providers API access
HF_TOKEN=hf_your_token_here
# =============================================================================
# OPTIONAL: LLM Configuration
# =============================================================================
# Model to use for generation (default: meta-llama/Llama-3.1-8B-Instruct)
# Other options:
# - meta-llama/Meta-Llama-3-8B-Instruct
# - Qwen/Qwen2.5-72B-Instruct
# - mistralai/Mistral-7B-Instruct-v0.3
LLM_MODEL=meta-llama/Llama-3.1-8B-Instruct
# Temperature for LLM generation (0.0 to 1.0, default: 0.7)
# Lower = more focused/deterministic, Higher = more creative/diverse
LLM_TEMPERATURE=0.7
# Maximum tokens to generate (default: 2000)
LLM_MAX_TOKENS=2000
# =============================================================================
# OPTIONAL: Vector Store Configuration
# =============================================================================
# Number of tools to retrieve for context (default: 5)
RETRIEVAL_K=5
# Embedding model for vector search (default: sentence-transformers/all-mpnet-base-v2)
# Note: Database uses 768-dimensional embeddings
EMBEDDING_MODEL=sentence-transformers/all-mpnet-base-v2
# =============================================================================
# OPTIONAL: Gradio Configuration
# =============================================================================
# Port for Gradio app (default: 7860)
GRADIO_PORT=7860
# Server name (default: 0.0.0.0 for all interfaces)
GRADIO_SERVER_NAME=0.0.0.0
# Enable Gradio sharing link (default: False)
GRADIO_SHARE=False
|