Spaces:
Sleeping
Sleeping
File size: 8,425 Bytes
b47c9fb 6466c00 b47c9fb 6466c00 b47c9fb 6466c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
---
title: OSINT Investigation Assistant
emoji: ๐
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
short_description: RAG-powered OSINT investigation assistant with 344+ tools
license: mit
---
# ๐ OSINT Investigation Assistant
A RAG-powered AI assistant that helps investigators develop structured methodologies for open-source intelligence (OSINT) investigations. Built with LangChain, Supabase PGVector, and Hugging Face Inference Providers.
## โจ Features
- **๐ฏ Structured Methodologies**: Generate step-by-step investigation plans tailored to your query
- **๐ ๏ธ 344+ OSINT Tools**: Access recommendations from a comprehensive database of curated OSINT tools
- **๐ Context-Aware Retrieval**: Semantic search finds the most relevant tools for your investigation
- **๐ API Access**: Built-in REST API for integration with external applications
- **๐ฌ Chat Interface**: User-friendly conversational interface
- **๐ MCP Support**: Can be extended to work with AI agents via MCP protocol
## ๐๏ธ Architecture
```
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Gradio UI + API Endpoints โ
โโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโ
โ LangChain RAG Pipeline โ
โ โข Query Understanding โ
โ โข Tool Retrieval (PGVector) โ
โ โข Response Generation (LLM) โ
โโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโดโโโโโโโโโโโ
โ โ
โโโโโผโโโโโโโโโโโโ โโโโโโโผโโโโโโโโโโโโโ
โ Supabase โ โ HF Inference โ
โ PGVector DB โ โ Providers โ
โ (344 tools) โ โ (Llama 3.1) โ
โโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ
```
## ๐ Quick Start
### Local Development
1. **Clone the repository**
```bash
git clone <your-repo-url>
cd osint-llm
```
2. **Install dependencies**
```bash
pip install -r requirements.txt
```
3. **Set up environment variables**
```bash
cp .env.example .env
# Edit .env with your credentials
```
Required variables:
- `SUPABASE_CONNECTION_STRING`: Your Supabase PostgreSQL connection string
- `HF_TOKEN`: Your Hugging Face API token
4. **Run the application**
```bash
python app.py
```
The app will be available at `http://localhost:7860`
### Hugging Face Spaces Deployment
1. **Create a new Space** on Hugging Face
2. **Push this repository** to your Space
3. **Set environment variables** in Space settings:
- `SUPABASE_CONNECTION_STRING`
- `HF_TOKEN`
4. **Deploy** - The Space will automatically build and launch
## ๐ Usage
### Chat Interface
Simply ask your investigation questions:
```
"How do I investigate a suspicious domain?"
"What tools can I use to verify an image's authenticity?"
"How can I trace the origin of a social media account?"
```
The assistant will provide:
1. Investigation overview
2. Step-by-step methodology
3. Recommended tools with descriptions and URLs
4. Best practices and safety considerations
5. Expected outcomes
### Tool Search
Use the "Tool Search" tab to directly search for OSINT tools by category or purpose.
### API Access
This app automatically exposes REST API endpoints for external integration.
**Python Client:**
```python
from gradio_client import Client
client = Client("your-space-url")
result = client.predict(
"How do I investigate a domain?",
api_name="/investigate"
)
print(result)
```
**JavaScript Client:**
```javascript
import { Client } from "@gradio/client";
const client = await Client.connect("your-space-url");
const result = await client.predict("/investigate", {
message: "How do I investigate a domain?"
});
console.log(result.data);
```
**cURL:**
```bash
curl -X POST "https://your-space.hf.space/call/investigate" \
-H "Content-Type: application/json" \
-d '{"data": ["How do I investigate a domain?"]}'
```
**Available Endpoints:**
- `/call/investigate` - Main investigation assistant
- `/call/search_tools` - Direct tool search
- `/gradio_api/openapi.json` - OpenAPI specification
## ๐๏ธ Database
The app uses Supabase with PGVector extension to store and retrieve OSINT tools.
**Database Schema:**
```sql
CREATE TABLE bellingcat_tools (
id BIGINT PRIMARY KEY,
name TEXT,
category TEXT,
content TEXT,
url TEXT,
cost TEXT,
details TEXT,
embedding VECTOR,
created_at TIMESTAMP WITH TIME ZONE
);
```
**Tool Categories:**
- Archiving & Preservation
- Social Media Investigation
- Image & Video Analysis
- Domain & Network Investigation
- Geolocation
- Data Extraction
- Verification & Fact-Checking
- And more...
## ๐ ๏ธ Technology Stack
- **UI/API**: [Gradio](https://gradio.app/) - Automatic API generation
- **RAG Framework**: [LangChain](https://langchain.com/) - Retrieval pipeline
- **Vector Database**: [Supabase](https://supabase.com/) with PGVector extension
- **Embeddings**: HuggingFace sentence-transformers
- **LLM**: [Hugging Face Inference Providers](https://huggingface.co/docs/inference-providers/) - Llama 3.1
- **Language**: Python 3.9+
## ๐ Project Structure
```
osint-llm/
โโโ app.py # Main Gradio application
โโโ requirements.txt # Python dependencies
โโโ .env.example # Environment variables template
โโโ README.md # This file
โโโ src/
โโโ __init__.py
โโโ vectorstore.py # Supabase PGVector connection
โโโ rag_pipeline.py # LangChain RAG logic
โโโ llm_client.py # Inference Provider client
โโโ prompts.py # Investigation prompt templates
```
## โ๏ธ Configuration
### Environment Variables
See `.env.example` for all available configuration options.
**Required:**
- `SUPABASE_CONNECTION_STRING` - PostgreSQL connection string
- `HF_TOKEN` - Hugging Face API token
**Optional:**
- `LLM_MODEL` - Model to use (default: meta-llama/Llama-3.1-8B-Instruct)
- `LLM_TEMPERATURE` - Generation temperature (default: 0.7)
- `LLM_MAX_TOKENS` - Max tokens to generate (default: 2000)
- `RETRIEVAL_K` - Number of tools to retrieve (default: 5)
- `EMBEDDING_MODEL` - Embedding model (default: sentence-transformers/all-MiniLM-L6-v2)
### Supported LLM Models
- `meta-llama/Llama-3.1-8B-Instruct` (recommended)
- `meta-llama/Meta-Llama-3-8B-Instruct`
- `Qwen/Qwen2.5-72B-Instruct`
- `mistralai/Mistral-7B-Instruct-v0.3`
## ๐ฐ Cost Considerations
### Hugging Face Inference Providers
- Free tier: $0.10/month credits
- PRO tier: $2.00/month credits + pay-as-you-go
- Typical cost: ~$0.001-0.01 per query
- Recommended budget: $10-50/month for moderate usage
### Supabase
- Free tier sufficient for most use cases
- PGVector operations are standard database queries
### Hugging Face Spaces
- Free CPU hosting available
- GPU upgrade: ~$0.60/hour (optional, not required)
## ๐ฎ Future Enhancements
- [ ] MCP server integration for AI agent tool use
- [ ] Multi-turn conversation with memory
- [ ] User authentication and query logging
- [ ] Additional tool databases and sources
- [ ] Export methodologies as PDF/markdown
- [ ] Tool usage examples and tutorials
- [ ] Community-contributed tool reviews
## ๐ค Contributing
Contributions are welcome! Please feel free to submit issues or pull requests.
## ๐ License
MIT License - See LICENSE file for details
## ๐ Acknowledgments
- Tool data sourced from [Bellingcat's Online Investigation Toolkit](https://www.bellingcat.com/)
- Built with support from the OSINT community
## ๐ Support
For issues or questions:
- Open an issue on GitHub
- Check the [Hugging Face Spaces documentation](https://huggingface.co/docs/hub/spaces)
- Review the [Gradio documentation](https://gradio.app/docs/)
---
Built with โค๏ธ for the OSINT community
|