Spaces:
Runtime error
Runtime error
| from pytorch_lightning.callbacks import Callback | |
| from pytorch_lightning.loggers import WandbLogger | |
| import numpy as np | |
| from pytorch_lightning.utilities import rank_zero_only | |
| from typing import Union | |
| import pytorch_lightning as pl | |
| import os | |
| from matplotlib import pyplot as plt | |
| from sgm.util import exists, isheatmap | |
| import torchvision | |
| from PIL import Image | |
| import torch | |
| import wandb | |
| from einops import rearrange | |
| class ImageLogger(Callback): | |
| def __init__( | |
| self, | |
| batch_frequency, | |
| max_images, | |
| clamp=True, | |
| increase_log_steps=True, | |
| rescale=True, | |
| disabled=False, | |
| log_on_batch_idx=False, | |
| log_first_step=False, | |
| log_images_kwargs=None, | |
| log_before_first_step=False, | |
| enable_autocast=True, | |
| ): | |
| super().__init__() | |
| self.enable_autocast = enable_autocast | |
| self.rescale = rescale | |
| self.batch_freq = batch_frequency | |
| self.max_images = max_images | |
| self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)] | |
| if not increase_log_steps: | |
| self.log_steps = [self.batch_freq] | |
| self.clamp = clamp | |
| self.disabled = disabled | |
| self.log_on_batch_idx = log_on_batch_idx | |
| self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} | |
| self.log_first_step = log_first_step | |
| self.log_before_first_step = log_before_first_step | |
| def log_local( | |
| self, | |
| save_dir, | |
| split, | |
| images, | |
| global_step, | |
| current_epoch, | |
| batch_idx, | |
| pl_module: Union[None, pl.LightningModule] = None, | |
| ): | |
| root = os.path.join(save_dir, "images", split) | |
| for k in images: | |
| if isheatmap(images[k]): | |
| fig, ax = plt.subplots() | |
| ax = ax.matshow(images[k].cpu().numpy(), cmap="hot", interpolation="lanczos") | |
| plt.colorbar(ax) | |
| plt.axis("off") | |
| filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) | |
| os.makedirs(root, exist_ok=True) | |
| path = os.path.join(root, filename) | |
| plt.savefig(path) | |
| plt.close() | |
| # TODO: support wandb | |
| else: | |
| grid = torchvision.utils.make_grid(images[k].squeeze(2), nrow=4) | |
| if self.rescale: | |
| grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
| # print(grid.shape, grid.dtype, grid.min(), grid.max(), k) | |
| grid = rearrange(grid.squeeze(1), "c h w -> h w c") | |
| # grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
| grid = grid.numpy() | |
| grid = (grid * 255).astype(np.uint8) | |
| filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) | |
| path = os.path.join(root, filename) | |
| os.makedirs(os.path.split(path)[0], exist_ok=True) | |
| img = Image.fromarray(grid) | |
| img.save(path) | |
| if exists(pl_module): | |
| assert isinstance( | |
| pl_module.logger, WandbLogger | |
| ), "logger_log_image only supports WandbLogger currently" | |
| pl_module.logger.log_image( | |
| key=f"{split}/{k}", | |
| images=[ | |
| img, | |
| ], | |
| step=pl_module.global_step, | |
| ) | |
| def log_img(self, pl_module, batch, batch_idx, split="train"): | |
| check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step | |
| if ( | |
| self.check_frequency(check_idx) | |
| and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0 | |
| and callable(pl_module.log_images) | |
| and | |
| # batch_idx > 5 and | |
| self.max_images > 0 | |
| ): | |
| logger = type(pl_module.logger) | |
| is_train = pl_module.training | |
| if is_train: | |
| pl_module.eval() | |
| gpu_autocast_kwargs = { | |
| "enabled": self.enable_autocast, # torch.is_autocast_enabled(), | |
| "dtype": torch.get_autocast_gpu_dtype(), | |
| "cache_enabled": torch.is_autocast_cache_enabled(), | |
| } | |
| with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs): | |
| images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) | |
| for k in images: | |
| N = min(images[k].shape[0], self.max_images) | |
| if not isheatmap(images[k]): | |
| images[k] = images[k][:N] | |
| if isinstance(images[k], torch.Tensor): | |
| images[k] = images[k].detach().float().cpu() | |
| if self.clamp and not isheatmap(images[k]): | |
| images[k] = torch.clamp(images[k], -1.0, 1.0) | |
| self.log_local( | |
| pl_module.logger.save_dir, | |
| split, | |
| images, | |
| pl_module.global_step, | |
| pl_module.current_epoch, | |
| batch_idx, | |
| pl_module=pl_module if isinstance(pl_module.logger, WandbLogger) else None, | |
| ) | |
| if is_train: | |
| pl_module.train() | |
| def check_frequency(self, check_idx): | |
| if check_idx: | |
| check_idx -= 1 | |
| if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and ( | |
| check_idx > 0 or self.log_first_step | |
| ): | |
| try: | |
| self.log_steps.pop(0) | |
| except IndexError as e: | |
| print(e) | |
| pass | |
| return True | |
| return False | |
| def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): | |
| if not self.disabled and (pl_module.global_step > 0 or self.log_first_step): | |
| self.log_img(pl_module, batch, batch_idx, split="train") | |
| def on_train_batch_start(self, trainer, pl_module, batch, batch_idx): | |
| if self.log_before_first_step and pl_module.global_step == 0: | |
| print(f"{self.__class__.__name__}: logging before training") | |
| self.log_img(pl_module, batch, batch_idx, split="train") | |
| def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs): | |
| if not self.disabled and pl_module.global_step > 0: | |
| self.log_img(pl_module, batch, batch_idx, split="val") | |
| if hasattr(pl_module, "calibrate_grad_norm"): | |
| if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0: | |
| self.log_gradients(trainer, pl_module, batch_idx=batch_idx) | |
| def init_wandb(save_dir, opt, config, group_name, name_str): | |
| print(f"setting WANDB_DIR to {save_dir}") | |
| os.makedirs(save_dir, exist_ok=True) | |
| os.environ["WANDB_DIR"] = save_dir | |
| if opt.debug: | |
| wandb.init(project=opt.projectname, mode="offline", group=group_name) | |
| else: | |
| wandb.init( | |
| project=opt.projectname, | |
| config=config, | |
| settings=wandb.Settings(code_dir="./sgm"), | |
| group=group_name, | |
| name=name_str, | |
| ) | |