Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,19 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
# print(torch.cuda.get_device_capability(0)
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
import llama_cpp
|
| 9 |
-
from llama_cpp import Llama
|
| 10 |
-
# import llama_cpp.llama_tokenizer
|
| 11 |
import gradio as gr
|
| 12 |
-
|
| 13 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
filename=model_file,)
|
| 19 |
-
|
| 20 |
-
# llama = llama_cpp.Llama.from_pretrained(
|
| 21 |
-
# repo_id="large-traversaal/Alif-1.0-8B-Instruct",
|
| 22 |
-
# filename="*model-Q6_K.gguf",
|
| 23 |
-
# tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained(
|
| 24 |
-
# "large-traversaal/Alif-1.0-8B-Instruct"
|
| 25 |
-
# ),
|
| 26 |
-
# verbose=False,
|
| 27 |
-
# )
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
|
|
|
|
| 32 |
llama = Llama(
|
| 33 |
model_path=model_path_file,
|
| 34 |
n_gpu_layers=40, # Adjust based on VRAM
|
|
@@ -38,38 +23,13 @@ llama = Llama(
|
|
| 38 |
verbose=True # Enable debug logging
|
| 39 |
)
|
| 40 |
|
| 41 |
-
chat_prompt = """You are Urdu Chatbot. Write approriate response for given instruction:{inp} Response:"""
|
| 42 |
-
|
| 43 |
-
# prompt = "قابل تجدید توانائی کیا ہے؟"
|
| 44 |
-
prompt = "شہر کراچی کے بارے میں بتاؤ"
|
| 45 |
-
|
| 46 |
-
# prompt = chat_prompt.format(inp=prompt)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# Function to generate text with streaming output
|
| 56 |
-
def chat_with_ai(prompt):
|
| 57 |
-
query = chat_prompt.format(inp=prompt)
|
| 58 |
|
| 59 |
-
#response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming
|
| 60 |
-
response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming
|
| 61 |
-
|
| 62 |
-
# response = llama.create_chat_completion(
|
| 63 |
-
# messages = [
|
| 64 |
-
# {"role": "system", "content": "You are a Urdu Chatbot."},
|
| 65 |
-
# {
|
| 66 |
-
# "role": "user",
|
| 67 |
-
# "content": prompt
|
| 68 |
-
# }
|
| 69 |
-
# ],
|
| 70 |
-
# stream=True
|
| 71 |
-
# )
|
| 72 |
-
|
| 73 |
text = ""
|
| 74 |
for chunk in response:
|
| 75 |
content = chunk["choices"][0]["text"]
|
|
@@ -77,15 +37,72 @@ def chat_with_ai(prompt):
|
|
| 77 |
text += content
|
| 78 |
yield text
|
| 79 |
|
| 80 |
-
|
| 81 |
-
#
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
+
from threading import Thread
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
+
from llama_cpp import Llama
|
| 8 |
+
from datetime import datetime
|
| 9 |
|
| 10 |
+
# Load model from Hugging Face Hub
|
| 11 |
+
MODEL_ID = "large-traversaal/Alif-1.0-8B-Instruct"
|
| 12 |
+
MODEL_FILE = "model-Q8_0.gguf"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
model_path_file = hf_hub_download(MODEL_ID, filename=MODEL_FILE)
|
| 15 |
|
| 16 |
+
# Initialize Llama model
|
| 17 |
llama = Llama(
|
| 18 |
model_path=model_path_file,
|
| 19 |
n_gpu_layers=40, # Adjust based on VRAM
|
|
|
|
| 23 |
verbose=True # Enable debug logging
|
| 24 |
)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Function to generate responses
|
| 28 |
+
def generate_response(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
| 29 |
+
# chat_prompt = f"You are an Urdu Chatbot. Write an appropriate response for the given instruction: {message} Response:"
|
| 30 |
+
chat_prompt = f"{system_prompt}\n ### Instruction: {message}\n ### Response:"
|
| 31 |
+
response = llama(chat_prompt, temperature=temperature, max_tokens=max_new_tokens, top_k=top_k, repeat_penalty=repetition_penalty, top_p=top_p, stop=["Q:", "\n"], echo=False, stream=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
text = ""
|
| 34 |
for chunk in response:
|
| 35 |
content = chunk["choices"][0]["text"]
|
|
|
|
| 37 |
text += content
|
| 38 |
yield text
|
| 39 |
|
| 40 |
+
# def generate_response(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
| 41 |
+
# """Generates a streaming response from the Llama model."""
|
| 42 |
+
# messages = [
|
| 43 |
+
# {"role": "system", "content": "You are an Urdu Chatbot. Write an appropriate response for the given instruction."},
|
| 44 |
+
# ]
|
| 45 |
+
|
| 46 |
+
# # Add history and the current message
|
| 47 |
+
# #for user, bot in history:
|
| 48 |
+
# #messages.append({"role": "user", "content": user})
|
| 49 |
+
# #messages.append({"role": "assistant", "content": bot})
|
| 50 |
+
|
| 51 |
+
# messages.append({"role": "user", "content": message})
|
| 52 |
+
|
| 53 |
+
# response = llama.create_chat_completion(
|
| 54 |
+
# messages=messages,
|
| 55 |
+
# stream=True,
|
| 56 |
+
# )
|
| 57 |
+
|
| 58 |
+
# partial_message = ""
|
| 59 |
+
# for part in response:
|
| 60 |
+
# content = part["choices"][0]["delta"].get("content", "")
|
| 61 |
+
# partial_message += content
|
| 62 |
+
# yield partial_message
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# JavaScript function for `on_load`
|
| 66 |
+
on_load = """
|
| 67 |
+
async()=>{ alert("Welcome to the Traversaal Alif 1.0 Chatbot! This is an experimental AI model. Please use responsibly."); }
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
placeholder = """
|
| 71 |
+
<center><h1>10 Questions</h1><br>Think of a person, place, or thing. I'll ask you 10 yes/no questions to try and guess it.
|
| 72 |
+
</center>
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
# Create custom chat UI using `gr.Blocks`
|
| 76 |
+
with gr.Blocks(js=on_load, theme=gr.themes.Default()) as demo:
|
| 77 |
+
with gr.Column(scale=1, elem_id="center-content"):
|
| 78 |
+
gr.Markdown(
|
| 79 |
+
"""
|
| 80 |
+
<div style="text-align: center;">
|
| 81 |
+
<h1>Alif 1.0 Urdu & English Chatbot 🚀</h1>
|
| 82 |
+
<p>Alif 1.0 8B Instruct is an open-source model with highly advanced multilingual reasoning capabilities. It utilizes human refined multilingual synthetic data paired with reasoning to enhance cultural nuance and reasoning capabilities in english and urdu languages.</p>
|
| 83 |
+
</div>
|
| 84 |
+
""",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
chat = gr.ChatInterface(
|
| 88 |
+
generate_response,
|
| 89 |
+
#chatbot=gr.Chatbot(placeholder=placeholder),
|
| 90 |
+
#title="🚀" + " " + "Alif-1.0 Chatbot",
|
| 91 |
+
#description="Urdu AI Chatbot powered by Llama.cpp",
|
| 92 |
+
examples=[
|
| 93 |
+
["شہر کراچی کے بارے میں بتاؤ"],
|
| 94 |
+
["قابل تجدید توانائی کیا ہے؟"],
|
| 95 |
+
["پاکستان کے بارے میں بتائیں"]
|
| 96 |
+
],
|
| 97 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
| 98 |
+
additional_inputs=[
|
| 99 |
+
gr.Textbox(value="You are an Urdu Chatbot. Write an appropriate response for the given instruction in Urdu.", label="System prompt", render=False),
|
| 100 |
+
gr.Slider(0, 1, 0.8, label="Temperature", render=False),
|
| 101 |
+
gr.Slider(128, 4096, 512, label="Max new tokens", render=False),
|
| 102 |
+
gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
|
| 103 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
|
| 104 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
|
| 105 |
+
],
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
demo.queue(max_size=10).launch(share=True)
|