Spaces:
Sleeping
Sleeping
Commit
·
79309e0
1
Parent(s):
d37e44c
fix err
Browse files- app.py +5 -3
- src/model.py +22 -17
app.py
CHANGED
|
@@ -14,6 +14,7 @@ if "model_name" not in st.session_state:
|
|
| 14 |
st.session_state.model_name = None
|
| 15 |
st.session_state.audio = None
|
| 16 |
st.session_state.wav_file = None
|
|
|
|
| 17 |
|
| 18 |
with st.sidebar.form("my_form"):
|
| 19 |
|
|
@@ -33,15 +34,16 @@ with st.sidebar.form("my_form"):
|
|
| 33 |
speaker_id = st.selectbox("source voice", options= list(dataset_dict.keys()))
|
| 34 |
speaker_url = st.text_input("speaker url", value="")
|
| 35 |
# speaker_id = st.selectbox("source voice", options= glob.glob("voices/*.wav"))
|
| 36 |
-
if st.session_state.model_name != model_name :
|
| 37 |
st.session_state.model_name = model_name
|
| 38 |
-
st.session_state.model = Model(model_name=model_name)
|
| 39 |
st.session_state.speaker_id = speaker_id
|
|
|
|
| 40 |
|
| 41 |
# Every form must have a submit button.
|
| 42 |
submitted = st.form_submit_button("Submit")
|
| 43 |
if submitted:
|
| 44 |
-
st.session_state.audio = st.session_state.model.inference(text=text, speaker_id=speaker_id
|
| 45 |
|
| 46 |
audio_holder = st.empty()
|
| 47 |
audio_holder.audio(st.session_state.audio, sample_rate=16000)
|
|
|
|
| 14 |
st.session_state.model_name = None
|
| 15 |
st.session_state.audio = None
|
| 16 |
st.session_state.wav_file = None
|
| 17 |
+
st.session_state.speaker_url = ""
|
| 18 |
|
| 19 |
with st.sidebar.form("my_form"):
|
| 20 |
|
|
|
|
| 34 |
speaker_id = st.selectbox("source voice", options= list(dataset_dict.keys()))
|
| 35 |
speaker_url = st.text_input("speaker url", value="")
|
| 36 |
# speaker_id = st.selectbox("source voice", options= glob.glob("voices/*.wav"))
|
| 37 |
+
if st.session_state.model_name != model_name or speaker_url != st.session_state.speaker_url :
|
| 38 |
st.session_state.model_name = model_name
|
| 39 |
+
st.session_state.model = Model(model_name=model_name, speaker_url=speaker_url)
|
| 40 |
st.session_state.speaker_id = speaker_id
|
| 41 |
+
st.session_state.speaker_url = speaker_url
|
| 42 |
|
| 43 |
# Every form must have a submit button.
|
| 44 |
submitted = st.form_submit_button("Submit")
|
| 45 |
if submitted:
|
| 46 |
+
st.session_state.audio = st.session_state.model.inference(text=text, speaker_id=speaker_id)
|
| 47 |
|
| 48 |
audio_holder = st.empty()
|
| 49 |
audio_holder.audio(st.session_state.audio, sample_rate=16000)
|
src/model.py
CHANGED
|
@@ -3,7 +3,7 @@ import torch
|
|
| 3 |
import requests
|
| 4 |
import torchaudio
|
| 5 |
import numpy as np
|
| 6 |
-
from src.reduce_noise import smooth_and_reduce_noise, model_remove_noise, model, df_state
|
| 7 |
import io
|
| 8 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 9 |
from pydub import AudioSegment
|
|
@@ -60,36 +60,41 @@ def uroman_normalization(string):
|
|
| 60 |
|
| 61 |
class Model():
|
| 62 |
|
| 63 |
-
def __init__(self, model_name):
|
| 64 |
self.model_name = model_name
|
| 65 |
self.processor = SpeechT5Processor.from_pretrained(model_name)
|
| 66 |
self.model = SpeechT5ForTextToSpeech.from_pretrained(model_name)
|
| 67 |
# self.model.generate = partial(self.model.generate, use_cache=True)
|
| 68 |
|
| 69 |
self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
if model_name == "truong-xuan-linh/speecht5-vietnamese-commonvoice" or model_name == "truong-xuan-linh/speecht5-irmvivoice":
|
| 71 |
self.speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
|
| 72 |
-
else:
|
| 73 |
-
self.speaker_embeddings = torch.ones((1, 512)) # or load xvectors from a file
|
| 74 |
|
| 75 |
-
def inference(self, text, speaker_id=None
|
| 76 |
# if self.model_name == "truong-xuan-linh/speecht5-vietnamese-voiceclone-v2":
|
| 77 |
# # self.speaker_embeddings = torch.tensor(dataset_dict_v2[speaker_id])
|
| 78 |
# wavform, _ = torchaudio.load(speaker_id)
|
| 79 |
# self.speaker_embeddings = create_speaker_embedding(wavform)[0]
|
| 80 |
|
| 81 |
if "voiceclone" in self.model_name:
|
| 82 |
-
if not speaker_url:
|
| 83 |
self.speaker_embeddings = torch.tensor(dataset_dict[speaker_id])
|
| 84 |
-
else:
|
| 85 |
-
response = requests.get(speaker_url)
|
| 86 |
-
audio_stream = io.BytesIO(response.content)
|
| 87 |
-
audio_segment = AudioSegment.from_file(audio_stream, format="wav")
|
| 88 |
-
audio_segment = audio_segment.set_channels(1)
|
| 89 |
-
audio_segment = audio_segment.set_frame_rate(16000)
|
| 90 |
-
audio_segment = audio_segment.set_sample_width(2)
|
| 91 |
-
wavform, _ = torchaudio.load(audio_segment.export())
|
| 92 |
-
self.speaker_embeddings = create_speaker_embedding(wavform)[0]
|
| 93 |
# self.speaker_embeddings = create_speaker_embedding(speaker_id)[0]
|
| 94 |
# wavform, _ = torchaudio.load("voices/kcbn1.wav")
|
| 95 |
# self.speaker_embeddings = create_speaker_embedding(wavform)[0]
|
|
@@ -114,8 +119,8 @@ class Model():
|
|
| 114 |
speech = self.model.generate_speech(inputs["input_ids"], threshold=0.5, speaker_embeddings=self.speaker_embeddings, vocoder=vocoder)
|
| 115 |
full_speech.append(speech.numpy())
|
| 116 |
# full_speech.append(butter_bandpass_filter(speech.numpy(), lowcut=10, highcut=5000, fs=16000, order=2))
|
| 117 |
-
out_audio = model_remove_noise(model, df_state, np.concatenate(full_speech))
|
| 118 |
-
return
|
| 119 |
|
| 120 |
@staticmethod
|
| 121 |
def moving_average(data, window_size):
|
|
|
|
| 3 |
import requests
|
| 4 |
import torchaudio
|
| 5 |
import numpy as np
|
| 6 |
+
# from src.reduce_noise import smooth_and_reduce_noise, model_remove_noise, model, df_state
|
| 7 |
import io
|
| 8 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 9 |
from pydub import AudioSegment
|
|
|
|
| 60 |
|
| 61 |
class Model():
|
| 62 |
|
| 63 |
+
def __init__(self, model_name, speaker_url=""):
|
| 64 |
self.model_name = model_name
|
| 65 |
self.processor = SpeechT5Processor.from_pretrained(model_name)
|
| 66 |
self.model = SpeechT5ForTextToSpeech.from_pretrained(model_name)
|
| 67 |
# self.model.generate = partial(self.model.generate, use_cache=True)
|
| 68 |
|
| 69 |
self.model.eval()
|
| 70 |
+
|
| 71 |
+
self.speaker_url = speaker_url
|
| 72 |
+
if speaker_url:
|
| 73 |
+
|
| 74 |
+
print(f"download speaker_url")
|
| 75 |
+
response = requests.get(speaker_url)
|
| 76 |
+
audio_stream = io.BytesIO(response.content)
|
| 77 |
+
audio_segment = AudioSegment.from_file(audio_stream, format="wav")
|
| 78 |
+
audio_segment = audio_segment.set_channels(1)
|
| 79 |
+
audio_segment = audio_segment.set_frame_rate(16000)
|
| 80 |
+
audio_segment = audio_segment.set_sample_width(2)
|
| 81 |
+
wavform, _ = torchaudio.load(audio_segment.export())
|
| 82 |
+
self.speaker_embeddings = create_speaker_embedding(wavform)[0]
|
| 83 |
+
else:
|
| 84 |
+
self.speaker_embeddings = None
|
| 85 |
+
|
| 86 |
if model_name == "truong-xuan-linh/speecht5-vietnamese-commonvoice" or model_name == "truong-xuan-linh/speecht5-irmvivoice":
|
| 87 |
self.speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
def inference(self, text, speaker_id=None):
|
| 90 |
# if self.model_name == "truong-xuan-linh/speecht5-vietnamese-voiceclone-v2":
|
| 91 |
# # self.speaker_embeddings = torch.tensor(dataset_dict_v2[speaker_id])
|
| 92 |
# wavform, _ = torchaudio.load(speaker_id)
|
| 93 |
# self.speaker_embeddings = create_speaker_embedding(wavform)[0]
|
| 94 |
|
| 95 |
if "voiceclone" in self.model_name:
|
| 96 |
+
if not self.speaker_url:
|
| 97 |
self.speaker_embeddings = torch.tensor(dataset_dict[speaker_id])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# self.speaker_embeddings = create_speaker_embedding(speaker_id)[0]
|
| 99 |
# wavform, _ = torchaudio.load("voices/kcbn1.wav")
|
| 100 |
# self.speaker_embeddings = create_speaker_embedding(wavform)[0]
|
|
|
|
| 119 |
speech = self.model.generate_speech(inputs["input_ids"], threshold=0.5, speaker_embeddings=self.speaker_embeddings, vocoder=vocoder)
|
| 120 |
full_speech.append(speech.numpy())
|
| 121 |
# full_speech.append(butter_bandpass_filter(speech.numpy(), lowcut=10, highcut=5000, fs=16000, order=2))
|
| 122 |
+
# out_audio = model_remove_noise(model, df_state, np.concatenate(full_speech))
|
| 123 |
+
return np.concatenate(full_speech)
|
| 124 |
|
| 125 |
@staticmethod
|
| 126 |
def moving_average(data, window_size):
|