Spaces:
Running
Running
| import whisper | |
| from pytube import YouTube | |
| from transformers import pipeline | |
| import gradio as gr | |
| import os | |
| model = whisper.load_model("base") | |
| summarizer = pipeline("summarization") | |
| def get_audio(url): | |
| yt = YouTube(url) | |
| video = yt.streams.filter(only_audio=True).first() | |
| out_file=video.download(output_path=".") | |
| base, ext = os.path.splitext(out_file) | |
| new_file = base+'.mp3' | |
| os.rename(out_file, new_file) | |
| a = new_file | |
| return a | |
| def get_text(url): | |
| result = model.transcribe(get_audio(url)) | |
| return result['text'] | |
| def get_summary(article): | |
| print(article) | |
| b = summarizer(article, min_length=5, max_length=20) | |
| print(b) | |
| #b = b[0]['summary_text'] | |
| return b | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1><center>Free YouTube URL Video to Text using OpenAI's Whisper Model</center></h1>") | |
| gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>") | |
| input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL') | |
| result_button_transcribe = gr.Button('1. Transcribe') | |
| output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript') | |
| result_button_summary = gr.Button('2. Create Summary') | |
| output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary') | |
| result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe) | |
| result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary) | |
| demo.launch(debug = True) |