Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| import sys | |
| from pathlib import Path | |
| import random | |
| import string | |
| import time | |
| from queue import Queue | |
| from threading import Thread | |
| text_gen=gr.Interface.load("spaces/trysem/visua") | |
| def get_prompts(prompt_text): | |
| return text_gen(prompt_text) | |
| proc1=gr.Interface.load("models/dreamlike-art/dreamlike-photoreal-2.0") | |
| def restart_script_periodically(): | |
| while True: | |
| time.sleep(600) # 10 minutes | |
| try: | |
| os.execl(sys.executable, sys.executable, *sys.argv) | |
| except: | |
| pass | |
| restart_thread = Thread(target=restart_script_periodically, daemon=True) | |
| restart_thread.start() | |
| queue = Queue() | |
| queue_threshold = 800 | |
| def add_random_noise(prompt, noise_level=0.07): | |
| if noise_level == 0: | |
| noise_level = 0.07 | |
| # Get the percentage of characters to add as noise | |
| percentage_noise = noise_level * 5 | |
| # Get the number of characters to add as noise | |
| num_noise_chars = int(len(prompt) * (percentage_noise/100)) | |
| # Get the indices of the characters to add noise to | |
| noise_indices = random.sample(range(len(prompt)), num_noise_chars) | |
| # Add noise to the selected characters | |
| prompt_list = list(prompt) | |
| noise_chars = string.ascii_letters + string.punctuation + ' ' | |
| for index in noise_indices: | |
| prompt_list[index] = random.choice(noise_chars) | |
| return "".join(prompt_list) | |
| def send_it1(inputs, noise_level, proc1=proc1): | |
| prompt_with_noise = add_random_noise(inputs, noise_level) | |
| output1 = proc1(prompt_with_noise) | |
| return output1 | |
| def send_it2(inputs, noise_level, proc1=proc1): | |
| prompt_with_noise = add_random_noise(inputs, noise_level) | |
| output2 = proc1(prompt_with_noise) | |
| return output2 | |
| def send_it3(inputs, noise_level, proc1=proc1): | |
| prompt_with_noise = add_random_noise(inputs, noise_level) | |
| output3 = proc1(prompt_with_noise) | |
| return output3 | |
| #def send_it4(inputs, noise_level, proc1=proc1): | |
| #prompt_with_noise = add_random_noise(inputs, noise_level) | |
| #output4 = proc1(prompt_with_noise) | |
| #return output4 | |
| with gr.Blocks(css="footer {visibility: hidden}") as myface: | |
| with gr.Row(): | |
| input_text=gr.Textbox(label="Short Prompt") | |
| see_prompts=gr.Button("Magic Prompt") | |
| with gr.Row(): | |
| prompt=gr.Textbox(label="Enter Prompt") | |
| noise_level=gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs.") | |
| run=gr.Button("Generate") | |
| with gr.Row(): | |
| like_message = gr.Button("❤️❤️❤️ Press the Like Button if you enjoy my space! ❤️❤️❤️") | |
| with gr.Row(): | |
| output1=gr.Image(label="Dreamlike-photoreal-2.0") | |
| output2=gr.Image(label="Dreamlike-photoreal-2.0") | |
| output3=gr.Image(label="Dreamlike-photoreal-2.0") | |
| #output4=gr.Image(label="Dreamlike-photoreal-2.0") | |
| #with gr.Row(): | |
| #output5=gr.Image(label="Dreamlike-photoreal-2.0") | |
| #output6=gr.Image(label="Dreamlike-photoreal-2.0") | |
| #with gr.Row(): | |
| #output7=gr.Image(label="Dreamlike-photoreal-2.0") | |
| #output8=gr.Image(label="Dreamlike-photoreal-2.0") | |
| see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False) | |
| run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1]) | |
| run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2]) | |
| run.click(send_it3, inputs=[prompt, noise_level], outputs=[output3]) | |
| #run.click(send_it4, inputs=[prompt, noise_level], outputs=[output4]) | |
| #run.click(send_it5, inputs=[prompt, noise_level], outputs=[output5]) | |
| #run.click(send_it6, inputs=[prompt, noise_level], outputs=[output6]) | |
| #run.click(send_it7, inputs=[prompt, noise_level], outputs=[output7]) | |
| #run.click(send_it8, inputs=[prompt, noise_level], outputs=[output8]) | |
| myface.launch(enable_queue=True, inline=True) | |
| block.queue(concurrency_count=100) |