Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -9,21 +9,18 @@ from typing import Optional, Dict, Any, List
|
|
| 9 |
import json
|
| 10 |
import re
|
| 11 |
from contextlib import asynccontextmanager
|
| 12 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor
|
| 13 |
from huggingface_hub import InferenceClient
|
| 14 |
import base64
|
| 15 |
|
| 16 |
# Set up cache directories BEFORE importing any HuggingFace modules
|
| 17 |
cache_base = "/app/.cache"
|
| 18 |
os.environ['HF_HOME'] = cache_base
|
| 19 |
-
os.environ['TRANSFORMERS_CACHE'] = f"{cache_base}/transformers"
|
| 20 |
os.environ['HF_DATASETS_CACHE'] = f"{cache_base}/datasets"
|
| 21 |
os.environ['HF_HUB_CACHE'] = f"{cache_base}/hub"
|
| 22 |
|
| 23 |
# Ensure cache directories exist
|
| 24 |
cache_dirs = [
|
| 25 |
os.environ['HF_HOME'],
|
| 26 |
-
os.environ['TRANSFORMERS_CACHE'],
|
| 27 |
os.environ['HF_DATASETS_CACHE'],
|
| 28 |
os.environ['HF_HUB_CACHE']
|
| 29 |
]
|
|
@@ -31,15 +28,13 @@ cache_dirs = [
|
|
| 31 |
for cache_dir in cache_dirs:
|
| 32 |
os.makedirs(cache_dir, exist_ok=True)
|
| 33 |
|
| 34 |
-
# Global variables
|
| 35 |
-
model = None
|
| 36 |
-
audio_pipeline = None
|
| 37 |
client = None
|
| 38 |
|
| 39 |
@asynccontextmanager
|
| 40 |
async def lifespan(app: FastAPI):
|
| 41 |
# Startup
|
| 42 |
-
global
|
| 43 |
try:
|
| 44 |
print("π Starting NatureLM Audio Decoder API...")
|
| 45 |
print(f"π Using cache directory: {os.environ.get('HF_HOME', '/app/.cache')}")
|
|
@@ -47,84 +42,7 @@ async def lifespan(app: FastAPI):
|
|
| 47 |
# Initialize HuggingFace client for inference API
|
| 48 |
client = InferenceClient()
|
| 49 |
print("β
HuggingFace client initialized successfully")
|
| 50 |
-
|
| 51 |
-
# Load NatureLM-audio model locally for better performance
|
| 52 |
-
try:
|
| 53 |
-
print("π Loading NatureLM-audio model...")
|
| 54 |
-
model_name = "EarthSpeciesProject/NatureLM-audio"
|
| 55 |
-
|
| 56 |
-
# For NatureLM-audio, we need to use a different approach since it's a custom model
|
| 57 |
-
# Let's try using the processor and model directly
|
| 58 |
-
try:
|
| 59 |
-
# Load processor first
|
| 60 |
-
processor = AutoProcessor.from_pretrained(
|
| 61 |
-
model_name,
|
| 62 |
-
trust_remote_code=True,
|
| 63 |
-
cache_dir=os.environ['TRANSFORMERS_CACHE']
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
# Load model with specific configuration for NatureLM-audio
|
| 67 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 68 |
-
model_name,
|
| 69 |
-
torch_dtype=torch.float16,
|
| 70 |
-
device_map="auto",
|
| 71 |
-
trust_remote_code=True,
|
| 72 |
-
cache_dir=os.environ['TRANSFORMERS_CACHE'],
|
| 73 |
-
low_cpu_mem_usage=True
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
print("β
NatureLM-audio model loaded successfully")
|
| 77 |
-
|
| 78 |
-
# Create a custom pipeline for NatureLM-audio
|
| 79 |
-
def naturelm_audio_pipeline(audio_input, **kwargs):
|
| 80 |
-
"""Custom pipeline for NatureLM-audio processing"""
|
| 81 |
-
try:
|
| 82 |
-
# Process audio with the model
|
| 83 |
-
if isinstance(audio_input, bytes):
|
| 84 |
-
# Convert bytes to the format expected by the model
|
| 85 |
-
# This is a simplified approach - in practice, you'd need to match the model's expected input format
|
| 86 |
-
inputs = processor(
|
| 87 |
-
audio_input,
|
| 88 |
-
return_tensors="pt",
|
| 89 |
-
sampling_rate=16000,
|
| 90 |
-
**kwargs
|
| 91 |
-
)
|
| 92 |
-
else:
|
| 93 |
-
inputs = processor(audio_input, return_tensors="pt", **kwargs)
|
| 94 |
-
|
| 95 |
-
# Generate response
|
| 96 |
-
with torch.no_grad():
|
| 97 |
-
outputs = model.generate(
|
| 98 |
-
**inputs,
|
| 99 |
-
max_length=512,
|
| 100 |
-
do_sample=True,
|
| 101 |
-
temperature=0.7,
|
| 102 |
-
pad_token_id=processor.tokenizer.eos_token_id
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
# Decode the response
|
| 106 |
-
response = processor.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 107 |
-
return {"text": response}
|
| 108 |
-
|
| 109 |
-
except Exception as e:
|
| 110 |
-
print(f"Error in NatureLM pipeline: {e}")
|
| 111 |
-
return {"text": "Error processing audio with NatureLM-audio model"}
|
| 112 |
-
|
| 113 |
-
audio_pipeline = naturelm_audio_pipeline
|
| 114 |
-
|
| 115 |
-
except Exception as model_error:
|
| 116 |
-
print(f"β οΈ Could not load NatureLM-audio model locally: {model_error}")
|
| 117 |
-
print("π Falling back to HuggingFace Inference API")
|
| 118 |
-
model = None
|
| 119 |
-
audio_pipeline = None
|
| 120 |
-
|
| 121 |
-
except Exception as model_error:
|
| 122 |
-
print(f"β οΈ Could not load model locally: {model_error}")
|
| 123 |
-
print("π Falling back to HuggingFace Inference API")
|
| 124 |
-
model = None
|
| 125 |
-
audio_pipeline = None
|
| 126 |
-
|
| 127 |
-
print("β
API ready for NatureLM-audio analysis")
|
| 128 |
|
| 129 |
except Exception as e:
|
| 130 |
print(f"β Error during startup: {e}")
|
|
@@ -461,15 +379,14 @@ async def health_check():
|
|
| 461 |
return {
|
| 462 |
"status": "healthy",
|
| 463 |
"service": "NatureLM Audio Decoder API",
|
| 464 |
-
"
|
| 465 |
-
"
|
| 466 |
-
"client_ready": client is not None
|
| 467 |
}
|
| 468 |
|
| 469 |
@app.post("/analyze", response_model=AnalysisResponse)
|
| 470 |
async def analyze_audio(file: UploadFile = File(...)):
|
| 471 |
"""
|
| 472 |
-
Analyze audio file using NatureLM-audio model
|
| 473 |
"""
|
| 474 |
try:
|
| 475 |
# Save uploaded file temporarily
|
|
@@ -515,50 +432,34 @@ async def analyze_audio(file: UploadFile = File(...)):
|
|
| 515 |
complexity=audio_chars.get('audio_quality_indicators', {}).get('complexity_score', 0)
|
| 516 |
)
|
| 517 |
|
| 518 |
-
# Use
|
| 519 |
try:
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 534 |
else:
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
with open(temp_path, "rb") as audio_file:
|
| 540 |
-
audio_bytes = audio_file.read()
|
| 541 |
-
|
| 542 |
-
# Encode audio as base64 for API
|
| 543 |
-
audio_b64 = base64.b64encode(audio_bytes).decode('utf-8')
|
| 544 |
-
|
| 545 |
-
# Call NatureLM-audio model via HuggingFace API
|
| 546 |
-
response = client.post(
|
| 547 |
-
"EarthSpeciesProject/NatureLM-audio",
|
| 548 |
-
inputs={
|
| 549 |
-
"audio": audio_b64,
|
| 550 |
-
"text": prompt
|
| 551 |
-
}
|
| 552 |
-
)
|
| 553 |
-
|
| 554 |
-
# Parse response
|
| 555 |
-
if isinstance(response, list) and len(response) > 0:
|
| 556 |
-
combined_response = response[0]
|
| 557 |
-
else:
|
| 558 |
-
combined_response = str(response)
|
| 559 |
-
|
| 560 |
-
detection_method = "HuggingFace Inference API"
|
| 561 |
-
|
| 562 |
except Exception as api_error:
|
| 563 |
print(f"API call failed: {api_error}")
|
| 564 |
# Fallback to a comprehensive mock response for testing
|
|
|
|
| 9 |
import json
|
| 10 |
import re
|
| 11 |
from contextlib import asynccontextmanager
|
|
|
|
| 12 |
from huggingface_hub import InferenceClient
|
| 13 |
import base64
|
| 14 |
|
| 15 |
# Set up cache directories BEFORE importing any HuggingFace modules
|
| 16 |
cache_base = "/app/.cache"
|
| 17 |
os.environ['HF_HOME'] = cache_base
|
|
|
|
| 18 |
os.environ['HF_DATASETS_CACHE'] = f"{cache_base}/datasets"
|
| 19 |
os.environ['HF_HUB_CACHE'] = f"{cache_base}/hub"
|
| 20 |
|
| 21 |
# Ensure cache directories exist
|
| 22 |
cache_dirs = [
|
| 23 |
os.environ['HF_HOME'],
|
|
|
|
| 24 |
os.environ['HF_DATASETS_CACHE'],
|
| 25 |
os.environ['HF_HUB_CACHE']
|
| 26 |
]
|
|
|
|
| 28 |
for cache_dir in cache_dirs:
|
| 29 |
os.makedirs(cache_dir, exist_ok=True)
|
| 30 |
|
| 31 |
+
# Global variables
|
|
|
|
|
|
|
| 32 |
client = None
|
| 33 |
|
| 34 |
@asynccontextmanager
|
| 35 |
async def lifespan(app: FastAPI):
|
| 36 |
# Startup
|
| 37 |
+
global client
|
| 38 |
try:
|
| 39 |
print("π Starting NatureLM Audio Decoder API...")
|
| 40 |
print(f"π Using cache directory: {os.environ.get('HF_HOME', '/app/.cache')}")
|
|
|
|
| 42 |
# Initialize HuggingFace client for inference API
|
| 43 |
client = InferenceClient()
|
| 44 |
print("β
HuggingFace client initialized successfully")
|
| 45 |
+
print("β
API ready for NatureLM-audio analysis via HuggingFace Inference API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
except Exception as e:
|
| 48 |
print(f"β Error during startup: {e}")
|
|
|
|
| 379 |
return {
|
| 380 |
"status": "healthy",
|
| 381 |
"service": "NatureLM Audio Decoder API",
|
| 382 |
+
"client_ready": client is not None,
|
| 383 |
+
"model": "NatureLM-audio via HuggingFace Inference API"
|
|
|
|
| 384 |
}
|
| 385 |
|
| 386 |
@app.post("/analyze", response_model=AnalysisResponse)
|
| 387 |
async def analyze_audio(file: UploadFile = File(...)):
|
| 388 |
"""
|
| 389 |
+
Analyze audio file using NatureLM-audio model via HuggingFace Inference API
|
| 390 |
"""
|
| 391 |
try:
|
| 392 |
# Save uploaded file temporarily
|
|
|
|
| 432 |
complexity=audio_chars.get('audio_quality_indicators', {}).get('complexity_score', 0)
|
| 433 |
)
|
| 434 |
|
| 435 |
+
# Use HuggingFace Inference API for NatureLM-audio
|
| 436 |
try:
|
| 437 |
+
print("π Using HuggingFace Inference API for NatureLM-audio...")
|
| 438 |
+
|
| 439 |
+
# Read audio file as bytes
|
| 440 |
+
with open(temp_path, "rb") as audio_file:
|
| 441 |
+
audio_bytes = audio_file.read()
|
| 442 |
+
|
| 443 |
+
# Encode audio as base64 for API
|
| 444 |
+
audio_b64 = base64.b64encode(audio_bytes).decode('utf-8')
|
| 445 |
+
|
| 446 |
+
# Call NatureLM-audio model via HuggingFace API
|
| 447 |
+
response = client.post(
|
| 448 |
+
"EarthSpeciesProject/NatureLM-audio",
|
| 449 |
+
inputs={
|
| 450 |
+
"audio": audio_b64,
|
| 451 |
+
"text": prompt
|
| 452 |
+
}
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
# Parse response
|
| 456 |
+
if isinstance(response, list) and len(response) > 0:
|
| 457 |
+
combined_response = response[0]
|
| 458 |
else:
|
| 459 |
+
combined_response = str(response)
|
| 460 |
+
|
| 461 |
+
detection_method = "HuggingFace Inference API"
|
| 462 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
except Exception as api_error:
|
| 464 |
print(f"API call failed: {api_error}")
|
| 465 |
# Fallback to a comprehensive mock response for testing
|