File size: 6,035 Bytes
c40c447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""
Casos de uso para Forecasting.

Implementan la l贸gica de aplicaci贸n para pron贸sticos,
orquestando servicios de dominio y transformando DTOs.
"""

from typing import List
from app.domain.services.forecast_service import ForecastService
from app.domain.models.time_series import TimeSeries
from app.domain.models.forecast_config import ForecastConfig
from app.application.dtos.forecast_dtos import (
    ForecastInputDTO,
    ForecastOutputDTO,
    MultiForecastInputDTO,
    MultiForecastOutputDTO,
    SeriesInputDTO
)
from app.utils.logger import setup_logger

logger = setup_logger(__name__)


class ForecastUnivariateUseCase:
    """
    Caso de uso: Pron贸stico Univariado.
    
    Responsabilidad: Ejecutar pron贸stico para una serie temporal 煤nica.
    """
    
    def __init__(self, forecast_service: ForecastService):
        """
        Inicializa el caso de uso.
        
        Args:
            forecast_service: Servicio de dominio para forecasting
        """
        self.forecast_service = forecast_service
        logger.info("ForecastUnivariateUseCase initialized")
    
    def execute(self, input_dto: ForecastInputDTO) -> ForecastOutputDTO:
        """
        Ejecuta el caso de uso.
        
        Args:
            input_dto: Datos de entrada validados
        
        Returns:
            ForecastOutputDTO: Resultado del pron贸stico
        
        Raises:
            ValueError: Si los datos son inv谩lidos
            RuntimeError: Si falla el pron贸stico
        """
        logger.info(f"Executing forecast for series: {input_dto.series_id}")
        
        # Validar entrada
        input_dto.validate()
        
        # Convertir DTO a modelos de dominio
        series = TimeSeries(
            values=input_dto.values,
            timestamps=input_dto.timestamps,
            series_id=input_dto.series_id,
            freq=input_dto.freq
        )
        
        config = ForecastConfig(
            prediction_length=input_dto.prediction_length,
            quantile_levels=input_dto.quantile_levels,
            freq=input_dto.freq
        )
        
        # Ejecutar servicio de dominio
        try:
            result = self.forecast_service.forecast_univariate(series, config)
            logger.info(f"Forecast completed: {len(result.timestamps)} periods")
        except Exception as e:
            logger.error(f"Forecast failed: {e}", exc_info=True)
            raise RuntimeError(f"Forecast execution failed: {str(e)}") from e
        
        # Convertir resultado a DTO
        output_dto = ForecastOutputDTO(
            timestamps=result.timestamps,
            median=result.median,
            quantiles=result.quantiles,
            series_id=result.series_id,
            metadata={
                "prediction_length": config.prediction_length,
                "freq": config.freq,
                "context_length": len(series.values)
            }
        )
        
        return output_dto


class ForecastMultiSeriesUseCase:
    """
    Caso de uso: Pron贸stico Multi-Series.
    
    Responsabilidad: Ejecutar pron贸sticos para m煤ltiples series.
    """
    
    def __init__(self, forecast_service: ForecastService):
        """
        Inicializa el caso de uso.
        
        Args:
            forecast_service: Servicio de dominio para forecasting
        """
        self.forecast_service = forecast_service
        logger.info("ForecastMultiSeriesUseCase initialized")
    
    def execute(self, input_dto: MultiForecastInputDTO) -> MultiForecastOutputDTO:
        """
        Ejecuta el caso de uso para m煤ltiples series.
        
        Args:
            input_dto: Datos de entrada con m煤ltiples series
        
        Returns:
            MultiForecastOutputDTO: Resultados de todos los pron贸sticos
        """
        logger.info(f"Executing forecast for {len(input_dto.series_list)} series")
        
        # Validar entrada
        input_dto.validate()
        
        # Configuraci贸n compartida
        config = ForecastConfig(
            prediction_length=input_dto.prediction_length,
            quantile_levels=input_dto.quantile_levels,
            freq=input_dto.freq
        )
        
        # Convertir DTOs a modelos de dominio
        time_series_list: List[TimeSeries] = []
        for series_dto in input_dto.series_list:
            series = TimeSeries(
                values=series_dto.values,
                timestamps=series_dto.timestamps,
                series_id=series_dto.series_id,
                freq=input_dto.freq
            )
            time_series_list.append(series)
        
        # Ejecutar servicio de dominio
        results = []
        successful = 0
        failed = 0
        
        for ts in time_series_list:
            try:
                result = self.forecast_service.forecast_univariate(ts, config)
                
                output_dto = ForecastOutputDTO(
                    timestamps=result.timestamps,
                    median=result.median,
                    quantiles=result.quantiles,
                    series_id=result.series_id,
                    metadata={
                        "prediction_length": config.prediction_length,
                        "freq": config.freq,
                        "context_length": len(ts.values)
                    }
                )
                results.append(output_dto)
                successful += 1
                
            except Exception as e:
                logger.error(f"Forecast failed for series {ts.series_id}: {e}")
                failed += 1
                # Continuar con las siguientes series
        
        logger.info(f"Multi-series forecast completed: {successful} successful, {failed} failed")
        
        # Crear DTO de salida
        multi_output = MultiForecastOutputDTO(
            results=results,
            total_series=len(input_dto.series_list),
            successful=successful,
            failed=failed
        )
        
        return multi_output