File size: 8,842 Bytes
6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f 9d7f2c9 6391a9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import torch
import gradio as gr
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
from PIL import Image
# Model yükleme
print("Modeller yükleniyor...")
model_id = "runwayml/stable-diffusion-v1-5"
# Text-to-Image Pipeline
txt2img_pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
safety_checker=None
)
txt2img_pipe.scheduler = DPMSolverMultistepScheduler.from_config(txt2img_pipe.scheduler.config)
# Image-to-Image Pipeline
img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
safety_checker=None
)
img2img_pipe.scheduler = DPMSolverMultistepScheduler.from_config(img2img_pipe.scheduler.config)
if torch.cuda.is_available():
txt2img_pipe = txt2img_pipe.to("cuda")
txt2img_pipe.enable_attention_slicing()
img2img_pipe = img2img_pipe.to("cuda")
img2img_pipe.enable_attention_slicing()
print("GPU kullanılıyor ✅")
else:
print("CPU kullanılıyor (yavaş olabilir)")
# Text-to-Image fonksiyonu
def generate_image(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed):
"""Text'ten görüntü üretir"""
device = "cuda" if torch.cuda.is_available() else "cpu"
generator = torch.Generator(device).manual_seed(int(seed))
image = txt2img_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(num_steps),
guidance_scale=guidance_scale,
width=int(width),
height=int(height),
generator=generator
).images[0]
return image
# Image-to-Image fonksiyonu
def transform_image(init_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed):
"""Mevcut görüntüyü dönüştürür"""
if init_image is None:
return None
device = "cuda" if torch.cuda.is_available() else "cpu"
generator = torch.Generator(device).manual_seed(int(seed))
# Görüntüyü yeniden boyutlandır
init_image = init_image.resize((512, 512))
image = img2img_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image,
num_inference_steps=int(num_steps),
guidance_scale=guidance_scale,
strength=strength,
generator=generator
).images[0]
return image
# Gradio UI
with gr.Blocks(title="🎨 Stable Diffusion Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎨 Stable Diffusion Görüntü Üretici
Text-to-Image ve Image-to-Image modelleri ile hayal gücünüzü görüntüye dönüştürün!
**Model:** Stable Diffusion v1.5
**Geliştirici:** Mehmet Tuğrul Kaya
""")
# TAB YAPISI
with gr.Tabs():
# TAB 1: TEXT-TO-IMAGE
with gr.Tab("📝 Text-to-Image"):
with gr.Row():
with gr.Column(scale=1):
t2i_prompt = gr.Textbox(
label="✍️ Prompt",
placeholder="A beautiful sunset over mountains, digital art, highly detailed",
lines=3
)
t2i_negative = gr.Textbox(
label="🚫 Negative Prompt",
placeholder="blurry, low quality, distorted",
lines=2,
value="blurry, low quality, ugly, distorted, deformed"
)
with gr.Accordion("⚙️ Gelişmiş Ayarlar", open=False):
t2i_steps = gr.Slider(10, 50, value=25, step=1, label="🔄 Steps")
t2i_guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="🎯 Guidance Scale")
with gr.Row():
t2i_width = gr.Slider(256, 768, value=512, step=64, label="📐 Width")
t2i_height = gr.Slider(256, 768, value=512, step=64, label="📏 Height")
t2i_seed = gr.Number(label="🌱 Seed", value=42, precision=0)
t2i_btn = gr.Button("🎨 Görüntü Üret", variant="primary", size="lg")
with gr.Column(scale=1):
t2i_output = gr.Image(label="🖼️ Üretilen Görüntü", type="pil")
gr.Markdown("### 💡 Örnek Promptlar:")
gr.Examples(
examples=[
["A majestic lion in savanna at sunset, photorealistic, 8k", "blurry", 25, 7.5, 512, 512, 42],
["Futuristic cyberpunk city, neon lights, night", "blurry, dark", 30, 8.0, 512, 512, 123],
["Cute cat wearing wizard hat, digital art, kawaii", "scary, ugly", 25, 7.5, 512, 512, 456],
["Beautiful Turkish tea glass, Istanbul Bosphorus view, sunset", "blurry", 25, 7.5, 512, 512, 789],
],
inputs=[t2i_prompt, t2i_negative, t2i_steps, t2i_guidance, t2i_width, t2i_height, t2i_seed],
outputs=t2i_output,
fn=generate_image,
cache_examples=False
)
t2i_btn.click(
fn=generate_image,
inputs=[t2i_prompt, t2i_negative, t2i_steps, t2i_guidance, t2i_width, t2i_height, t2i_seed],
outputs=t2i_output
)
# TAB 2: IMAGE-TO-IMAGE
with gr.Tab("🖼️ Image-to-Image"):
with gr.Row():
with gr.Column(scale=1):
i2i_input = gr.Image(
label="📤 Başlangıç Görüntüsü Yükle",
type="pil",
sources=["upload", "clipboard"]
)
i2i_prompt = gr.Textbox(
label="✍️ Dönüşüm Prompt'u",
placeholder="Turn this into a watercolor painting",
lines=3
)
i2i_negative = gr.Textbox(
label="🚫 Negative Prompt",
placeholder="blurry, low quality",
lines=2,
value="blurry, low quality, distorted"
)
with gr.Accordion("⚙️ Gelişmiş Ayarlar", open=False):
i2i_steps = gr.Slider(10, 50, value=30, step=1, label="🔄 Steps")
i2i_guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="🎯 Guidance Scale")
i2i_strength = gr.Slider(
0.0, 1.0, value=0.75, step=0.05,
label="💪 Strength (Ne kadar değişsin?)"
)
i2i_seed = gr.Number(label="🌱 Seed", value=42, precision=0)
i2i_btn = gr.Button("🔄 Görüntüyü Dönüştür", variant="primary", size="lg")
with gr.Column(scale=1):
i2i_output = gr.Image(label="✨ Dönüştürülmüş Görüntü", type="pil")
gr.Markdown("""
### 💡 Image-to-Image İpuçları:
- **Strength 0.3-0.5**: Küçük değişiklikler, orijinale yakın
- **Strength 0.6-0.8**: Orta seviye değişiklik (önerilen)
- **Strength 0.9-1.0**: Büyük değişiklikler, orijinalden uzak
### 🎨 Örnek Kullanımlar:
- Fotoğrafı resme dönüştür: "oil painting style"
- Stil değiştir: "anime style", "cyberpunk style"
- Renklendirme: "colorful, vibrant colors"
- Sezon değiştir: "winter scene with snow"
""")
i2i_btn.click(
fn=transform_image,
inputs=[i2i_input, i2i_prompt, i2i_negative, i2i_steps, i2i_guidance, i2i_strength, i2i_seed],
outputs=i2i_output
)
# GENEL BİLGİLER
gr.Markdown("""
---
### 📝 Genel İpuçları:
- **Prompt**: Detaylı ve açıklayıcı olun (örn: "photorealistic", "8k", "detailed" ekleyin)
- **Negative Prompt**: İstemediğiniz özellikleri ekleyin
- **Steps**: 25-30 arası optimal
- **Guidance Scale**: 7-8 arası genelde en iyi sonuçları verir
### 🔗 Bağlantılar:
- [GitHub](https://github.com/mtkaya)
- [Hugging Face](https://huggingface.co/tugrulkaya)
""")
if __name__ == "__main__":
demo.launch()
|