Spaces:
Runtime error
Runtime error
cache_resource using streamlit
Browse files
app.py
CHANGED
|
@@ -4,39 +4,41 @@ import pandas
|
|
| 4 |
from sentence_transformers import SentenceTransformer, util
|
| 5 |
import torch
|
| 6 |
|
| 7 |
-
# from sentence_transformers import SentenceTransformer, util
|
| 8 |
-
|
| 9 |
-
|
| 10 |
st.title('Arxiv Paper Recommendation')
|
| 11 |
paper_you_like = st.text_input(
|
| 12 |
"Enter the title of any paper you like 👇",
|
| 13 |
-
placeholder =
|
| 14 |
)
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
sentences = pickle.load(f)
|
| 20 |
|
| 21 |
-
with open('embeddings.pkl', 'rb') as f:
|
| 22 |
-
embeddings = pickle.load(f)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
# Calculating the similarity between titles
|
| 28 |
-
cosine_scores = util.cos_sim(embeddings, model.encode(paper_you_like))
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
| 32 |
|
|
|
|
|
|
|
| 33 |
top_similar_papers = torch.topk(cosine_scores,dim=0, k=5,sorted=True)
|
| 34 |
# top_similar_papers
|
| 35 |
|
| 36 |
-
# s = ''
|
| 37 |
-
|
| 38 |
for i in top_similar_papers.indices:
|
| 39 |
-
|
| 40 |
-
st.write(sentences[i.item()])
|
| 41 |
-
# st.text(s)
|
| 42 |
-
|
|
|
|
| 4 |
from sentence_transformers import SentenceTransformer, util
|
| 5 |
import torch
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
st.title('Arxiv Paper Recommendation')
|
| 8 |
paper_you_like = st.text_input(
|
| 9 |
"Enter the title of any paper you like 👇",
|
| 10 |
+
placeholder = None
|
| 11 |
)
|
| 12 |
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def get_sentences_data():
|
| 15 |
+
with open('sentences.pkl', 'rb') as f:
|
| 16 |
+
sentences = pickle.load(f)
|
| 17 |
+
return sentences
|
| 18 |
|
| 19 |
+
sentences = get_sentences_data()
|
|
|
|
| 20 |
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
@st.cache_resource
|
| 23 |
+
def get_embeddings_data():
|
| 24 |
+
with open('embeddings.pkl', 'rb') as f:
|
| 25 |
+
embeddings = pickle.load(f)
|
| 26 |
+
return embeddings
|
| 27 |
|
| 28 |
+
embeddings = get_embeddings_data()
|
| 29 |
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
@st.cache_resource
|
| 32 |
+
def get_model():
|
| 33 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 34 |
+
return model
|
| 35 |
|
| 36 |
+
model = get_model()
|
| 37 |
|
| 38 |
+
# Calculating the similarity between titles
|
| 39 |
+
cosine_scores = util.cos_sim(embeddings, model.encode(paper_you_like))
|
| 40 |
top_similar_papers = torch.topk(cosine_scores,dim=0, k=5,sorted=True)
|
| 41 |
# top_similar_papers
|
| 42 |
|
|
|
|
|
|
|
| 43 |
for i in top_similar_papers.indices:
|
| 44 |
+
st.write(sentences[i.item()])
|
|
|
|
|
|
|
|
|