Spaces:
Sleeping
Sleeping
File size: 14,195 Bytes
acd8e16 e6b0a87 1853581 e6b0a87 1853581 e6b0a87 acd8e16 be92fdf acd8e16 05dfa56 acd8e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
"""
Evaluator Module
Handles dataset loading, SQL execution, and metrics computation.
"""
import os
import time
import yaml
import duckdb
import sqlglot
import pandas as pd
from typing import Dict, Any, List, Tuple, Optional
from dataclasses import dataclass
from models_registry import models_registry, model_interface
from scoring import Metrics, scoring_engine
@dataclass
class DatasetConfig:
"""Configuration for a dataset."""
name: str
schema_path: str
loader_path: str
cases_path: str
@dataclass
class CaseConfig:
"""Configuration for a test case."""
id: str
question: str
reference_sql: Dict[str, str] # dialect -> SQL
difficulty: str
description: str
class DatasetManager:
"""Manages datasets and their configurations."""
def __init__(self, tasks_dir: str = "tasks"):
self.tasks_dir = tasks_dir
self.datasets = self._discover_datasets()
def _discover_datasets(self) -> Dict[str, DatasetConfig]:
"""Discover available datasets in the tasks directory."""
datasets = {}
if not os.path.exists(self.tasks_dir):
return datasets
# Look for datasets in the new multi-use-case structure
for use_case in os.listdir(self.tasks_dir):
use_case_path = os.path.join(self.tasks_dir, use_case)
if os.path.isdir(use_case_path):
# Look for datasets within each use case
for dataset_name in os.listdir(use_case_path):
dataset_path = os.path.join(use_case_path, dataset_name)
if os.path.isdir(dataset_path):
schema_path = os.path.join(dataset_path, "schema.sql")
loader_path = os.path.join(dataset_path, "loader.py")
cases_path = os.path.join(dataset_path, "cases.yaml")
# Check requirements based on use case
required_files = []
if use_case == "sql_generation":
# SQL generation needs all three files
required_files = [schema_path, loader_path, cases_path]
elif use_case == "code_generation":
# Code generation needs loader and cases
required_files = [loader_path, cases_path]
elif use_case == "documentation":
# Documentation only needs cases
required_files = [cases_path]
else:
# Default: require all files
required_files = [schema_path, loader_path, cases_path]
if all(os.path.exists(p) for p in required_files):
# Use the full path as the dataset name
full_name = f"{use_case}/{dataset_name}"
datasets[full_name] = DatasetConfig(
name=full_name,
schema_path=schema_path if os.path.exists(schema_path) else None,
loader_path=loader_path if os.path.exists(loader_path) else None,
cases_path=cases_path
)
return datasets
def get_datasets(self) -> Dict[str, DatasetConfig]:
"""Get all available datasets."""
return self.datasets
def get_dataset(self, name: str) -> Optional[DatasetConfig]:
"""Get a specific dataset by name."""
return self.datasets.get(name)
def load_cases(self, dataset_name: str) -> List[CaseConfig]:
"""Load test cases for a dataset."""
dataset = self.get_dataset(dataset_name)
if not dataset:
raise ValueError(f"Dataset not found: {dataset_name}")
with open(dataset.cases_path, 'r') as f:
cases_data = yaml.safe_load(f)
cases = []
for case_data in cases_data.get('cases', []):
try:
case = CaseConfig(
id=case_data['id'],
question=case_data['question'],
reference_sql=case_data['reference_sql'], # Human-provided ground truth SQL
difficulty=case_data.get('difficulty', 'medium'),
description=case_data.get('description', '')
)
cases.append(case)
except KeyError as e:
print(f"Missing key in case data: {e}")
print(f"Available keys: {list(case_data.keys())}")
raise
return cases
def create_database(self, dataset_name: str) -> str:
"""Create database for a dataset."""
dataset = self.get_dataset(dataset_name)
if not dataset:
raise ValueError(f"Dataset not found: {dataset_name}")
# Import and run the loader
loader_module_path = dataset.loader_path
loader_dir = os.path.dirname(loader_module_path)
loader_module_name = os.path.basename(loader_module_path).replace('.py', '')
import sys
sys.path.insert(0, loader_dir)
try:
loader_module = __import__(loader_module_name)
db_path = loader_module.create_database()
return db_path
finally:
sys.path.remove(loader_dir)
class SQLExecutor:
"""Handles SQL execution and result comparison."""
def __init__(self):
self.conn = None
def connect(self, db_path: str):
"""Connect to a DuckDB database."""
self.conn = duckdb.connect(db_path)
def disconnect(self):
"""Disconnect from the database."""
if self.conn:
self.conn.close()
self.conn = None
def execute_sql(self, sql: str) -> Tuple[bool, Optional[pd.DataFrame], str]:
"""Execute SQL and return success status, result, and error message."""
if not self.conn:
return False, None, "No database connection"
try:
result = self.conn.execute(sql).fetchdf()
return True, result, ""
except Exception as e:
return False, None, str(e)
def transpile_sql(self, sql: str, target_dialect: str) -> Tuple[bool, str, str]:
"""Transpile SQL to target dialect using sqlglot."""
try:
# Parse the SQL
parsed = sqlglot.parse_one(sql)
# Transpile to target dialect
transpiled = parsed.sql(dialect=target_dialect)
return True, transpiled, ""
except Exception as e:
return False, sql, str(e)
class MetricsComputer:
"""Computes evaluation metrics for SQL queries."""
def __init__(self):
self.executor = SQLExecutor()
def compute_result_match_f1(self, reference_df: pd.DataFrame, candidate_df: pd.DataFrame) -> float:
"""Compute F1 score for result matching."""
if reference_df is None or candidate_df is None:
return 0.0
# Convert to sets of tuples for comparison
try:
reference_set = set(tuple(row) for row in reference_df.values)
candidate_set = set(tuple(row) for row in candidate_df.values)
if not reference_set and not candidate_set:
return 1.0
if not reference_set or not candidate_set:
return 0.0
# Compute precision and recall
intersection = reference_set.intersection(candidate_set)
precision = len(intersection) / len(candidate_set) if candidate_set else 0.0
recall = len(intersection) / len(reference_set) if reference_set else 0.0
# Compute F1
if precision + recall == 0:
return 0.0
f1 = 2 * (precision * recall) / (precision + recall)
return f1
except Exception:
return 0.0
def compute_metrics(self, reference_sql: str, candidate_sql: str,
target_dialect: str, db_path: str) -> Metrics:
"""Compute all metrics for a candidate SQL query."""
# Connect to database
self.executor.connect(db_path)
try:
# Execute reference SQL
ref_success, ref_result, ref_error = self.executor.execute_sql(reference_sql)
# Transpile candidate SQL to target dialect
transpile_success, transpiled_sql, transpile_error = self.executor.transpile_sql(
candidate_sql, target_dialect
)
# Execute candidate SQL
if transpile_success:
cand_success, cand_result, cand_error = self.executor.execute_sql(transpiled_sql)
else:
cand_success, cand_result, cand_error = False, None, transpile_error
# Compute metrics
correctness_exact = 1.0 if (ref_success and cand_success and
self._results_equal(ref_result, cand_result)) else 0.0
result_match_f1 = 0.0
if ref_success and cand_success:
result_match_f1 = self.compute_result_match_f1(ref_result, cand_result)
exec_success = 1.0 if cand_success else 0.0
dialect_ok = 1.0 if transpile_success else 0.0
# For now, use default readability (would need actual SQL for proper computation)
readability = 0.8
# Latency is not measured here (would need timing in the calling code)
latency_ms = 0.0
return Metrics(
correctness_exact=correctness_exact,
result_match_f1=result_match_f1,
exec_success=exec_success,
latency_ms=latency_ms,
readability=readability,
dialect_ok=dialect_ok
)
finally:
self.executor.disconnect()
def _results_equal(self, df1: pd.DataFrame, df2: pd.DataFrame) -> bool:
"""Check if two DataFrames are equal."""
if df1 is None and df2 is None:
return True
if df1 is None or df2 is None:
return False
try:
# Reset indices and compare
df1_reset = df1.reset_index(drop=True)
df2_reset = df2.reset_index(drop=True)
# Compare shapes
if df1_reset.shape != df2_reset.shape:
return False
# Compare values
return df1_reset.equals(df2_reset)
except Exception:
return False
class Evaluator:
"""Main evaluator class that orchestrates the evaluation process."""
def __init__(self):
self.dataset_manager = DatasetManager()
self.metrics_computer = MetricsComputer()
def evaluate_model_on_case(self, model_name: str, dataset_name: str,
case_id: str, dialect: str, prompt_template: str) -> Dict[str, Any]:
"""Evaluate a model on a specific case."""
# Get model configuration
model_config = models_registry.get_model_by_name(model_name)
if not model_config:
raise ValueError(f"Model not found: {model_name}")
# Get dataset and case
cases = self.dataset_manager.load_cases(dataset_name)
case = next((c for c in cases if c.id == case_id), None)
if not case:
raise ValueError(f"Case not found: {case_id}")
# Get reference SQL for the dialect
reference_sql = case.reference_sql.get(dialect)
if not reference_sql:
raise ValueError(f"Reference SQL not found for dialect: {dialect}")
# Create database
db_path = self.dataset_manager.create_database(dataset_name)
# Load schema for prompt
dataset = self.dataset_manager.get_dataset(dataset_name)
with open(dataset.schema_path, 'r') as f:
schema = f.read()
# Create prompt
prompt = prompt_template.format(schema=schema, question=case.question)
# Generate SQL
start_time = time.time()
try:
candidate_sql = model_interface.generate_sql(model_config, prompt)
generation_time = (time.time() - start_time) * 1000 # Convert to ms
except Exception as e:
candidate_sql = ""
generation_time = 0.0
print(f"Error generating SQL: {e}")
# Compute metrics
metrics = self.metrics_computer.compute_metrics(
reference_sql, candidate_sql, dialect, db_path
)
# Update latency
metrics.latency_ms = generation_time
# Compute composite score
composite_score = scoring_engine.compute_composite_score(metrics)
# Clean up database
if os.path.exists(db_path):
os.remove(db_path)
return {
'model_name': model_name,
'provider': model_config.provider,
'dataset_name': dataset_name,
'case_id': case_id,
'dialect': dialect,
'question': case.question,
'reference_sql': reference_sql,
'candidate_sql': candidate_sql,
'correctness_exact': metrics.correctness_exact,
'result_match_f1': metrics.result_match_f1,
'exec_success': metrics.exec_success,
'latency_ms': metrics.latency_ms,
'readability': metrics.readability,
'dialect_ok': metrics.dialect_ok,
'composite_score': composite_score,
'timestamp': time.time()
}
# Global evaluator instance
evaluator = Evaluator()
|