File size: 29,946 Bytes
acd8e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
"""
LangChain + RAGAS Integrated App
Main application using LangChain for models and RAGAS for evaluation.
"""

import gradio as gr
import pandas as pd
import os
from typing import List, Tuple, Optional
from langchain_evaluator import langchain_evaluator
from langchain_models import langchain_models_registry


def get_available_datasets() -> List[str]:
    """Get list of available datasets."""
    datasets = []
    for item in os.listdir("tasks"):
        if os.path.isdir(f"tasks/{item}") and not item.startswith("."):
            datasets.append(item)
    return sorted(datasets)


def get_available_dialects() -> List[str]:
    """Get list of available SQL dialects."""
    return ["presto", "bigquery", "snowflake"]


def get_available_models() -> List[str]:
    """Get list of available models."""
    return langchain_models_registry.get_available_models()


def get_cases_for_dataset(dataset_name: str) -> List[str]:
    """Get list of cases for a dataset."""
    if not dataset_name:
        return []
    
    try:
        dataset = langchain_evaluator.load_dataset(dataset_name)
        cases = []
        for case in dataset['cases']:
            cases.append(f"{case['id']}: {case['question'][:50]}...")
        return cases
    except Exception as e:
        print(f"Error loading cases for {dataset_name}: {e}")
        return []

def update_case_dropdown(dataset_name: str):
    """Update case dropdown with new choices and reset value."""
    if not dataset_name:
        return gr.Dropdown(choices=[], value=None)
    
    try:
        dataset = langchain_evaluator.load_dataset(dataset_name)
        cases = []
        for case in dataset['cases']:
            cases.append(f"{case['id']}: {case['question'][:50]}...")
        
        # Return updated dropdown with new choices and no value
        return gr.Dropdown(choices=cases, value=None)
    except Exception as e:
        print(f"Error loading cases for {dataset_name}: {e}")
        return gr.Dropdown(choices=[], value=None)


def run_evaluation(
    dataset_name: str,
    dialect: str,
    case_selection: str,
    selected_models: List[str]
) -> Tuple[str, pd.DataFrame, dict, str, str, str]:
    """Run evaluation for selected models on a case."""
    
    print(f"πŸ” DEBUG - case_selection type: {type(case_selection)}, value: {case_selection}")
    print(f"πŸ” DEBUG - dataset_name: {dataset_name}, dialect: {dialect}, selected_models: {selected_models}")
    
    if not all([dataset_name, dialect, case_selection, selected_models]):
        return "Please select all required options.", pd.DataFrame(), {}, ""
    
    try:
        # Handle case_selection if it's a list (shouldn't happen but just in case)
        if isinstance(case_selection, list):
            print(f"⚠️ WARNING: case_selection is a list, taking first element")
            case_selection = case_selection[0] if case_selection else ""
        
        # Extract case ID from selection
        case_id = case_selection.split(":")[0] if ":" in case_selection else case_selection
        
        print(f"πŸš€ Starting evaluation:")
        print(f"   Dataset: {dataset_name}")
        print(f"   Dialect: {dialect}")
        print(f"   Case: {case_id}")
        print(f"   Models: {', '.join(selected_models)}")
        
        # Run evaluation
        results = langchain_evaluator.evaluate_models(
            dataset_name=dataset_name,
            dialect=dialect,
            case_id=case_id,
            model_names=selected_models
        )
        
        if not results:
            return "No results generated. Check console for errors.", pd.DataFrame(), {}, ""
        
        # Update leaderboard
        langchain_evaluator.update_leaderboard(results)
        
        # Prepare results for display
        results_data = []
        for result in results:
            results_data.append({
                'Model': result.model_name,
                'Reference SQL (Human)': result.reference_sql[:80] + "..." if len(result.reference_sql) > 80 else result.reference_sql,
                'Generated SQL (LLM)': result.generated_sql[:80] + "..." if len(result.generated_sql) > 80 else result.generated_sql,
                'Composite Score': f"{result.composite_score:.3f}",
                'Correctness': f"{result.correctness_exact:.3f}",
                'Result Match F1': f"{result.result_match_f1:.3f}",
                'Exec Success': f"{result.exec_success:.3f}",
                'Latency (ms)': f"{result.latency_ms:.1f}",
                'SQL Quality': f"{result.sql_quality:.3f}",
                'Semantic Similarity': f"{result.semantic_similarity:.3f}"
            })
        
        results_df = pd.DataFrame(results_data)
        
        # Detailed results
        detailed_results = {}
        for result in results:
            detailed_results[result.model_name] = {
                'reference_sql_human': result.reference_sql,
                'raw_sql_llm': result.raw_sql,
                'cleaned_sql_llm': result.generated_sql,
                'question': result.question,
                'all_metrics': {
                    'correctness_exact': result.correctness_exact,
                    'result_match_f1': result.result_match_f1,
                    'exec_success': result.exec_success,
                    'latency_ms': result.latency_ms,
                    'readability': result.readability,
                    'dialect_ok': result.dialect_ok,
                    'sql_quality': result.sql_quality,
                    'semantic_similarity': result.semantic_similarity,
                    'structural_similarity': result.structural_similarity,
                    'composite_score': result.composite_score
                }
            }
        
        status = f"βœ… Evaluation completed! {len(results)} models evaluated."
        
        # Get SQL for display (use first result as example)
        reference_sql = results[0].reference_sql if results else ""
        generated_sql = results[0].generated_sql if results else ""
        
        return status, results_df, detailed_results, "", reference_sql, generated_sql
        
    except Exception as e:
        error_msg = f"❌ Error during evaluation: {str(e)}"
        print(error_msg)
        return error_msg, pd.DataFrame(), {}, "", "", ""


def get_leaderboard_display() -> pd.DataFrame:
    """Get leaderboard data for display."""
    try:
        summary = langchain_evaluator.get_leaderboard_summary(top_n=50)
        
        if summary.empty:
            return pd.DataFrame({
                'Rank': ['-'],
                'Model': ['No data available'],
                'Avg Composite Score': ['-'],
                'Avg Correctness': ['-'],
                'Avg Result Match F1': ['-'],
                'Avg Exec Success': ['-'],
                'Avg Latency (ms)': ['-'],
                'Avg SQL Quality': ['-'],
                'Avg Semantic Similarity': ['-'],
                'Avg Structural Similarity': ['-'],
                'Cases Evaluated': ['-']
            })
        
        # Sort by composite score (highest first) and add ranking
        summary_sorted = summary.sort_values('composite_score_mean', ascending=False)
        
        # Format for display
        display_data = []
        for rank, (model_name, row) in enumerate(summary_sorted.iterrows(), 1):
            display_row = {
                'Rank': rank,
                'Model': model_name,
                'Avg Composite Score': f"{row['composite_score_mean']:.3f}",
                'Avg Correctness': f"{row['correctness_exact_mean']:.3f}",
                'Avg Result Match F1': f"{row['result_match_f1_mean']:.3f}",
                'Avg Exec Success': f"{row['exec_success_mean']:.3f}",
                'Avg Latency (ms)': f"{row['latency_ms_mean']:.1f}",
                'Cases Evaluated': int(row['composite_score_count'])
            }
            
            # Add custom metrics columns if they exist
            if 'sql_quality_mean' in row:
                display_row['Avg SQL Quality'] = f"{row['sql_quality_mean']:.3f}"
            if 'semantic_similarity_mean' in row:
                display_row['Avg Semantic Similarity'] = f"{row['semantic_similarity_mean']:.3f}"
            if 'structural_similarity_mean' in row:
                display_row['Avg Structural Similarity'] = f"{row['structural_similarity_mean']:.3f}"
            
            display_data.append(display_row)
        
        return pd.DataFrame(display_data)
        
    except Exception as e:
        print(f"Error loading leaderboard: {e}")
        return pd.DataFrame({
            'Rank': ['-'],
            'Model': ['Error loading data'],
            'Avg Composite Score': ['-'],
            'Avg Correctness': ['-'],
            'Avg Result Match F1': ['-'],
            'Avg Exec Success': ['-'],
            'Avg Latency (ms)': ['-'],
            'Avg SQL Quality': ['-'],
            'Avg Semantic Similarity': ['-'],
            'Avg Structural Similarity': ['-'],
            'Cases Evaluated': ['-']
        })


def run_comprehensive_evaluation(
    dataset_name: str,
    dialect: str,
    selected_models: List[str],
    max_cases: int
) -> tuple[str, pd.DataFrame, dict, str, str]:
    """Run comprehensive evaluation across multiple cases."""
    
    if not all([dataset_name, dialect, selected_models]):
        return "Please select dataset, dialect, and models.", pd.DataFrame(), {}, "", ""
    
    try:
        print(f"πŸš€ Starting comprehensive evaluation:")
        print(f"   Dataset: {dataset_name}")
        print(f"   Dialect: {dialect}")
        print(f"   Models: {', '.join(selected_models)}")
        print(f"   Max Cases: {max_cases}")
        
        results = langchain_evaluator.run_comprehensive_evaluation(
            dataset_name=dataset_name,
            dialect=dialect,
            model_names=selected_models,
            max_cases=max_cases if max_cases > 0 else None
        )
        
        # Update leaderboard
        langchain_evaluator.update_leaderboard(results)
        
        # Prepare results for display
        results_data = []
        for result in results:
            results_data.append({
                'Model': result.model_name,
                'Case': result.case_id,
                'Reference SQL (Human)': result.reference_sql[:80] + "..." if len(result.reference_sql) > 80 else result.reference_sql,
                'Generated SQL (LLM)': result.generated_sql[:80] + "..." if len(result.generated_sql) > 80 else result.generated_sql,
                'Composite Score': f"{result.composite_score:.3f}",
                'Correctness': f"{result.correctness_exact:.3f}",
                'Result Match F1': f"{result.result_match_f1:.3f}",
                'Exec Success': f"{result.exec_success:.3f}",
                'Latency (ms)': f"{result.latency_ms:.1f}",
                'SQL Quality': f"{result.sql_quality:.3f}",
                'Semantic Similarity': f"{result.semantic_similarity:.3f}"
            })
        
        results_df = pd.DataFrame(results_data)
        
        # Detailed results
        detailed_results = {}
        for result in results:
            detailed_results[f"{result.model_name}_{result.case_id}"] = {
                'reference_sql_human': result.reference_sql,
                'raw_sql_llm': result.raw_sql,
                'cleaned_sql_llm': result.generated_sql,
                'question': result.question,
                'all_metrics': {
                    'correctness_exact': result.correctness_exact,
                    'result_match_f1': result.result_match_f1,
                    'exec_success': result.exec_success,
                    'latency_ms': result.latency_ms,
                    'readability': result.readability,
                    'dialect_ok': result.dialect_ok,
                    'sql_quality': result.sql_quality,
                    'semantic_similarity': result.semantic_similarity,
                    'structural_similarity': result.structural_similarity,
                    'composite_score': result.composite_score
                }
            }
        
        status_msg = f"βœ… Comprehensive evaluation completed! {len(results)} evaluations performed."
        
        # Get SQL for display (use first result as example)
        reference_sql = results[0].reference_sql if results else ""
        generated_sql = results[0].generated_sql if results else ""
        
        return status_msg, results_df, detailed_results, reference_sql, generated_sql
        
    except Exception as e:
        error_msg = f"❌ Error during comprehensive evaluation: {str(e)}"
        print(error_msg)
        return error_msg, pd.DataFrame(), {}, "", ""


def create_interface():
    """Create the Gradio interface."""
    
    with gr.Blocks(title="NL→SQL Leaderboard (LangChain + RAGAS)", theme=gr.themes.Soft()) as app:
        gr.Markdown("""
        # NL→SQL Leaderboard (LangChain + RAGAS)

        A comprehensive evaluation platform for English β†’ SQL tasks using LangChain for model management and RAGAS for advanced evaluation metrics.

        Select a dataset, dialect, and test case, then choose models to evaluate. Results are automatically added to the public leaderboard with RAGAS metrics.
        """)

        with gr.Row():
            with gr.Column(scale=10):
                pass  # Empty column for spacing
            with gr.Column(scale=1):
                refresh_button = gr.Button("Refresh Leaderboard", variant="secondary", size="sm")

        with gr.Tabs():
            # Info Tab (moved to first)
            with gr.Tab("Info"):
                gr.Markdown("""
                ## About the NL→SQL Leaderboard (LangChain + Custom Evaluation)
                
                This platform evaluates natural language to SQL generation using advanced tools:
                
                **Technology Stack:**
                - **LangChain**: Model management and prompt handling
                - **Custom Evaluation**: Comprehensive evaluation metrics without external dependencies
                - **Gradio**: User interface
                - **DuckDB**: SQL execution
                - **sqlglot**: SQL dialect transpilation
                - **HuggingFace Transformers**: Local model inference
                
                **Features:**
                - **Local-first approach**: All models run locally for privacy and reliability
                - **Advanced metrics**: Custom SQL quality, semantic similarity, structural analysis
                - **Comprehensive evaluation**: Batch processing across multiple cases
                - **Multi-dialect support**: Presto, BigQuery, and Snowflake SQL dialects
                - **Real-time leaderboard**: Track model performance across different datasets
                
                **Evaluation Metrics:**
                - **Correctness**: Exact match with reference SQL
                - **Result Match F1**: Semantic similarity of query results
                - **Execution Success**: Whether the generated SQL executes without errors
                - **SQL Quality**: Structural and syntactic quality assessment
                - **Semantic Similarity**: Meaning-based comparison with reference
                - **Composite Score**: Weighted combination of all metrics
                """)
            
            # Evaluation Tab
            with gr.Tab("Evaluate"):
                with gr.Row():
                    with gr.Column(scale=1):
                        dataset_dropdown = gr.Dropdown(
                            choices=get_available_datasets(),
                            label="Dataset",
                            value=None,
                            allow_custom_value=True
                        )

                        dialect_dropdown = gr.Dropdown(
                            choices=get_available_dialects(),
                            label="SQL Dialect",
                            value="presto"
                        )

                        case_dropdown = gr.Dropdown(
                            choices=[],
                            label="Test Case",
                            interactive=True,
                            value=None,
                            allow_custom_value=False,
                            multiselect=False,
                            info="Select a dataset first to load test cases"
                        )

                        models_checkbox = gr.CheckboxGroup(
                            choices=get_available_models(),
                            label="Models to Evaluate",
                            value=[]
                        )

                        run_button = gr.Button("Run Evaluation", variant="primary")

                    with gr.Column(scale=2):
                        status_output = gr.Textbox(label="Status", interactive=False)
                        results_table = gr.Dataframe(label="Run Results", interactive=False)
                        detailed_results = gr.JSON(label="Detailed Metrics", visible=False)
                        
                        # SQL Display Section
                        with gr.Row():
                            with gr.Column():
                                reference_sql_display = gr.Code(
                                    label="Reference SQL (Human)",
                                    language="sql",
                                    interactive=False,
                                    visible=False
                                )
                            with gr.Column():
                                generated_sql_display = gr.Code(
                                    label="Generated SQL (LLM)",
                                    language="sql", 
                                    interactive=False,
                                    visible=False
                                )
                        
                        # Metric Explanations
                        with gr.Accordion("πŸ“Š How Metrics Are Calculated", open=False):
                            gr.Markdown("""
                            ### Evaluation Metrics Explained
                            
                            **🎯 Composite Score (0.0 - 1.0)**
                            - Weighted combination of all metrics: `Correctness Γ— 0.3 + Result Match F1 Γ— 0.3 + Exec Success Γ— 0.2 + SQL Quality Γ— 0.1 + Semantic Similarity Γ— 0.1`
                            - Higher is better (1.0 = perfect)
                            
                            **βœ… Correctness (0.0 - 1.0)**
                            - Exact string match between generated SQL and reference SQL
                            - 1.0 = identical, 0.0 = completely different
                            
                            **πŸ“Š Result Match F1 (0.0 - 1.0)**
                            - F1 score comparing query results (not SQL text)
                            - Executes both SQLs and compares result sets
                            - 1.0 = identical results, 0.0 = completely different results
                            
                            **⚑ Exec Success (0.0 - 1.0)**
                            - Whether the generated SQL executes without errors
                            - 1.0 = executes successfully, 0.0 = execution fails
                            
                            **⏱️ Latency (milliseconds)**
                            - Time taken to generate and execute the SQL
                            - Lower is better (faster response)
                            
                            **πŸ” SQL Quality (0.0 - 1.0)**
                            - How well the SQL addresses the question
                            - Based on semantic analysis of question vs SQL intent
                            
                            **🧠 Semantic Similarity (0.0 - 1.0)**
                            - Semantic similarity between generated and reference SQL
                            - Uses sentence transformers to compare meaning
                            - 1.0 = identical meaning, 0.0 = completely different meaning
                            """)

                # Event handlers
                dataset_dropdown.change(
                    fn=update_case_dropdown,
                    inputs=[dataset_dropdown],
                    outputs=[case_dropdown]
                )

                run_button.click(
                    fn=run_evaluation,
                    inputs=[dataset_dropdown, dialect_dropdown, case_dropdown, models_checkbox],
                    outputs=[status_output, results_table, detailed_results, gr.State(), reference_sql_display, generated_sql_display]
                )

            # Comprehensive Evaluation Tab
            with gr.Tab("Comprehensive Evaluation"):
                with gr.Row():
                    with gr.Column(scale=1):
                        comp_dataset_dropdown = gr.Dropdown(
                            choices=get_available_datasets(),
                            label="Dataset",
                            value=None,
                            allow_custom_value=True
                        )

                        comp_dialect_dropdown = gr.Dropdown(
                            choices=get_available_dialects(),
                            label="SQL Dialect",
                            value="presto"
                        )

                        comp_models_checkbox = gr.CheckboxGroup(
                            choices=get_available_models(),
                            label="Models to Evaluate",
                            value=[]
                        )

                        max_cases_slider = gr.Slider(
                            minimum=1,
                            maximum=50,
                            value=10,
                            step=1,
                            label="Max Cases to Evaluate"
                        )

                        comp_run_button = gr.Button("Run Comprehensive Evaluation", variant="primary")

                    with gr.Column(scale=2):
                        comp_status_output = gr.Textbox(label="Status", interactive=False)
                        comp_results_table = gr.Dataframe(label="Comprehensive Results", interactive=False)
                        comp_detailed_results = gr.JSON(label="Detailed Metrics", visible=False)
                        
                        # SQL Display Section for Comprehensive Results
                        with gr.Row():
                            with gr.Column():
                                comp_reference_sql_display = gr.Code(
                                    label="Reference SQL (Human)",
                                    language="sql",
                                    interactive=False,
                                    visible=False
                                )
                            with gr.Column():
                                comp_generated_sql_display = gr.Code(
                                    label="Generated SQL (LLM)",
                                    language="sql", 
                                    interactive=False,
                                    visible=False
                                )
                        
                        # Metric Explanations for Comprehensive Evaluation
                        with gr.Accordion("πŸ“Š How Metrics Are Calculated", open=False):
                            gr.Markdown("""
                            ### Comprehensive Evaluation Metrics
                            
                            **🎯 Composite Score (0.0 - 1.0)**
                            - Weighted combination: `Correctness Γ— 0.3 + Result Match F1 Γ— 0.3 + Exec Success Γ— 0.2 + SQL Quality Γ— 0.1 + Semantic Similarity Γ— 0.1`
                            - Higher is better (1.0 = perfect)
                            
                            **βœ… Correctness (0.0 - 1.0)**
                            - Exact string match between generated SQL and reference SQL
                            - 1.0 = identical, 0.0 = completely different
                            
                            **πŸ“Š Result Match F1 (0.0 - 1.0)**
                            - F1 score comparing query results (not SQL text)
                            - Executes both SQLs and compares result sets
                            - 1.0 = identical results, 0.0 = completely different results
                            
                            **⚑ Exec Success (0.0 - 1.0)**
                            - Whether the generated SQL executes without errors
                            - 1.0 = executes successfully, 0.0 = execution fails
                            
                            **⏱️ Latency (milliseconds)**
                            - Time taken to generate and execute the SQL
                            - Lower is better (faster response)
                            
                            **πŸ” SQL Quality (0.0 - 1.0)**
                            - How well the SQL addresses the question
                            - Based on semantic analysis of question vs SQL intent
                            
                            **🧠 Semantic Similarity (0.0 - 1.0)**
                            - Semantic similarity between generated and reference SQL
                            - Uses sentence transformers to compare meaning
                            - 1.0 = identical meaning, 0.0 = completely different meaning
                            
                            **πŸ“ˆ Comprehensive Evaluation**
                            - Tests models across multiple cases and datasets
                            - Provides average performance metrics
                            - Shows consistency across different SQL complexity levels
                            """)

                comp_run_button.click(
                    fn=run_comprehensive_evaluation,
                    inputs=[comp_dataset_dropdown, comp_dialect_dropdown, comp_models_checkbox, max_cases_slider],
                    outputs=[comp_status_output, comp_results_table, comp_detailed_results, comp_reference_sql_display, comp_generated_sql_display]
                )

            # Leaderboard Tab
            with gr.Tab("Leaderboard"):
                leaderboard_table = gr.Dataframe(
                    label="Global Leaderboard (Top 50)",
                    interactive=False,
                    value=get_leaderboard_display()
                )
                
                # Metric Explanations for Leaderboard
                with gr.Accordion("πŸ“Š How Leaderboard Metrics Are Calculated", open=False):
                    gr.Markdown("""
                    ### Global Leaderboard Metrics
                    
                    **πŸ† Rank**
                    - Models ranked by average composite score (highest first)
                    - Based on aggregated performance across all evaluations
                    
                    **🎯 Avg Composite Score (0.0 - 1.0)**
                    - Average of all composite scores for each model
                    - Weighted combination: `Correctness Γ— 0.3 + Result Match F1 Γ— 0.3 + Exec Success Γ— 0.2 + SQL Quality Γ— 0.1 + Semantic Similarity Γ— 0.1`
                    - Higher is better (1.0 = perfect)
                    
                    **βœ… Avg Correctness (0.0 - 1.0)**
                    - Average exact string match between generated SQL and reference SQL
                    - 1.0 = identical, 0.0 = completely different
                    
                    **πŸ“Š Avg Result Match F1 (0.0 - 1.0)**
                    - Average F1 score comparing query results (not SQL text)
                    - Executes both SQLs and compares result sets
                    - 1.0 = identical results, 0.0 = completely different results
                    
                    **⚑ Avg Exec Success (0.0 - 1.0)**
                    - Average success rate of SQL execution
                    - 1.0 = always executes successfully, 0.0 = always fails
                    
                    **⏱️ Avg Latency (milliseconds)**
                    - Average time taken to generate and execute SQL
                    - Lower is better (faster response)
                    
                    **πŸ“ˆ Cases Evaluated**
                    - Number of test cases each model has been evaluated on
                    - More cases = more reliable performance metrics
                    
                    **πŸ” Avg SQL Quality (0.0 - 1.0)**
                    - Average quality score of how well SQL addresses questions
                    - Based on semantic analysis of question vs SQL intent
                    
                    **🧠 Avg Semantic Similarity (0.0 - 1.0)**
                    - Average semantic similarity between generated and reference SQL
                    - Uses sentence transformers to compare meaning
                    - 1.0 = identical meaning, 0.0 = completely different meaning
                    
                    **πŸ“Š Avg Structural Similarity (0.0 - 1.0)**
                    - Average structural similarity between generated and reference SQL
                    - Compares SQL structure, keywords, and patterns
                    - 1.0 = identical structure, 0.0 = completely different structure
                    """)


        # Add refresh button click event
        refresh_button.click(
            fn=get_leaderboard_display,
            outputs=[leaderboard_table]
        )

    return app


if __name__ == "__main__":
    app = create_interface()
    app.launch(server_name="0.0.0.0", server_port=7860, share=True)