Spaces:
Sleeping
Sleeping
File size: 13,082 Bytes
acd8e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
"""
LangChain + Custom Evaluator
Combines LangChain for model management with custom evaluation metrics.
"""
import os
import time
import pandas as pd
from typing import Dict, List, Any, Optional
from pathlib import Path
import duckdb
import sqlglot
from langchain_models import langchain_models_registry
from custom_evaluator import custom_evaluator, EvaluationResult
class LangChainEvaluator:
"""Integrated evaluator using LangChain and custom evaluation metrics."""
def __init__(self):
self.models_registry = langchain_models_registry
self.custom_evaluator = custom_evaluator
def load_dataset(self, dataset_name: str) -> Dict[str, Any]:
"""Load dataset configuration and data."""
dataset_path = Path(f"tasks/{dataset_name}")
if not dataset_path.exists():
raise ValueError(f"Dataset {dataset_name} not found")
# Load schema
schema_path = dataset_path / "schema.sql"
with open(schema_path, 'r') as f:
schema = f.read()
# Load cases
cases_path = dataset_path / "cases.yaml"
import yaml
with open(cases_path, 'r') as f:
cases = yaml.safe_load(f)
# Load data
loader_path = dataset_path / "loader.py"
db_path = f"{dataset_name}.duckdb"
# Create database if it doesn't exist
if not os.path.exists(db_path):
self._create_database(loader_path, db_path)
return {
'schema': schema,
'cases': cases.get('cases', []), # Extract the cases list from YAML
'db_path': db_path
}
def _create_database(self, loader_path: Path, db_path: str):
"""Create database using the loader script."""
try:
# Import and run the loader
import importlib.util
spec = importlib.util.spec_from_file_location("loader", loader_path)
loader_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(loader_module)
# Run the loader function
if hasattr(loader_module, 'load_data'):
loader_module.load_data(db_path)
else:
print(f"β οΈ No load_data function found in {loader_path}")
except Exception as e:
print(f"β Error creating database: {e}")
def load_prompt_template(self, dialect: str) -> str:
"""Load prompt template for the given dialect."""
template_path = f"prompts/template_{dialect}.txt"
if not os.path.exists(template_path):
# Fallback to generic template
template_path = "prompts/template_presto.txt"
with open(template_path, 'r') as f:
return f.read()
def evaluate_models(
self,
dataset_name: str,
dialect: str,
case_id: str,
model_names: List[str]
) -> List[EvaluationResult]:
"""Evaluate multiple models on a single case."""
# Load dataset
dataset = self.load_dataset(dataset_name)
# Find the case
case = None
for c in dataset['cases']:
if c['id'] == case_id:
case = c
break
if not case:
raise ValueError(f"Case {case_id} not found in dataset {dataset_name}")
# Load prompt template
prompt_template = self.load_prompt_template(dialect)
# Setup database connection
db_conn = duckdb.connect(dataset['db_path'])
results = []
for model_name in model_names:
print(f"π Evaluating {model_name} on {dataset_name}/{case_id} ({dialect})")
# Get model configuration
model_config = self.models_registry.get_model_config(model_name)
if not model_config:
print(f"β οΈ Model {model_name} not found, skipping")
continue
try:
# Generate SQL using LangChain
raw_sql, generated_sql = self.models_registry.generate_sql(
model_config=model_config,
prompt_template=prompt_template,
schema=dataset['schema'],
question=case['question']
)
# Get reference SQL for the dialect
reference_sql = case['reference_sql'].get(dialect, case['reference_sql'].get('presto', ''))
print(f"π LLM Raw Output: {raw_sql[:100]}...")
print(f"π LLM Cleaned SQL: {generated_sql[:100]}...")
print(f"π Human Reference SQL: {reference_sql[:100]}...")
# Evaluate using custom evaluator
result = self.custom_evaluator.evaluate_sql(
model_name=model_name,
dataset=dataset_name,
case_id=case_id,
dialect=dialect,
question=case['question'],
raw_sql=raw_sql,
generated_sql=generated_sql,
reference_sql=reference_sql,
schema=dataset['schema'],
db_conn=db_conn
)
results.append(result)
# Calculate composite score
composite_score = (
result.correctness_exact * 0.3 +
result.result_match_f1 * 0.3 +
result.exec_success * 0.2 +
result.sql_quality * 0.1 +
result.semantic_similarity * 0.1
)
print(f"β
{model_name}: Composite Score = {composite_score:.3f}")
except Exception as e:
print(f"β Error evaluating {model_name}: {e}")
continue
# Close database connection
db_conn.close()
return results
def evaluate_batch(
self,
dataset_name: str,
dialect: str,
case_ids: List[str],
model_names: List[str]
) -> List[EvaluationResult]:
"""Evaluate multiple models on multiple cases."""
all_results = []
for case_id in case_ids:
print(f"\nπ― Evaluating case: {case_id}")
case_results = self.evaluate_models(
dataset_name=dataset_name,
dialect=dialect,
case_id=case_id,
model_names=model_names
)
all_results.extend(case_results)
return all_results
def get_leaderboard_data(self) -> pd.DataFrame:
"""Get current leaderboard data."""
leaderboard_path = "leaderboard.parquet"
if os.path.exists(leaderboard_path):
return pd.read_parquet(leaderboard_path)
else:
return pd.DataFrame()
def update_leaderboard(self, results: List[EvaluationResult]):
"""Update the leaderboard with new results."""
# Convert results to DataFrame
new_data = []
for result in results:
new_data.append({
'model_name': result.model_name,
'dataset_name': result.dataset,
'dialect': result.dialect,
'case_id': result.case_id,
'question': result.question,
'reference_sql': result.reference_sql,
'generated_sql': result.generated_sql,
'correctness_exact': result.correctness_exact,
'result_match_f1': result.result_match_f1,
'exec_success': result.exec_success,
'latency_ms': result.latency_ms,
'readability': result.readability,
'dialect_ok': result.dialect_ok,
'sql_quality': result.sql_quality,
'semantic_similarity': result.semantic_similarity,
'structural_similarity': result.structural_similarity,
'composite_score': result.composite_score,
'timestamp': str(pd.Timestamp.now())
})
new_df = pd.DataFrame(new_data)
# Load existing leaderboard
existing_df = self.get_leaderboard_data()
# Combine and save
if not existing_df.empty:
combined_df = pd.concat([existing_df, new_df], ignore_index=True)
else:
combined_df = new_df
# Ensure timestamp column is treated as string to avoid conversion issues
if 'timestamp' in combined_df.columns:
combined_df['timestamp'] = combined_df['timestamp'].astype(str)
combined_df.to_parquet("leaderboard.parquet", index=False)
print(f"π Leaderboard updated with {len(new_data)} new results")
def get_leaderboard_summary(self, top_n: int = 50) -> pd.DataFrame:
"""Get leaderboard summary with aggregated scores."""
df = self.get_leaderboard_data()
if df.empty:
return pd.DataFrame()
# Aggregate by model - handle missing RAGAS columns
agg_dict = {
'composite_score': ['mean', 'std', 'count'],
'correctness_exact': 'mean',
'result_match_f1': 'mean',
'exec_success': 'mean',
'latency_ms': 'mean'
}
# Add RAGAS columns if they exist
if 'sql_quality' in df.columns:
agg_dict['sql_quality'] = 'mean'
if 'semantic_similarity' in df.columns:
agg_dict['semantic_similarity'] = 'mean'
if 'structural_similarity' in df.columns:
agg_dict['structural_similarity'] = 'mean'
summary = df.groupby('model_name').agg(agg_dict).round(3)
# Flatten column names
summary.columns = ['_'.join(col).strip() for col in summary.columns]
# Sort by composite score
summary = summary.sort_values('composite_score_mean', ascending=False)
return summary.head(top_n)
def run_comprehensive_evaluation(
self,
dataset_name: str,
dialect: str,
model_names: List[str],
max_cases: Optional[int] = None
) -> List[EvaluationResult]:
"""Run comprehensive evaluation across all cases."""
# Load dataset
dataset = self.load_dataset(dataset_name)
# Get case IDs
case_ids = [case['id'] for case in dataset['cases']]
if max_cases:
case_ids = case_ids[:max_cases]
print(f"π Starting comprehensive evaluation:")
print(f" Dataset: {dataset_name}")
print(f" Dialect: {dialect}")
print(f" Models: {', '.join(model_names)}")
print(f" Cases: {len(case_ids)}")
# Run evaluation
results = self.evaluate_batch(
dataset_name=dataset_name,
dialect=dialect,
case_ids=case_ids,
model_names=model_names
)
# Update leaderboard
self.update_leaderboard(results)
# Print summary
self._print_evaluation_summary(results)
return results
def _print_evaluation_summary(self, results: List[EvaluationResult]):
"""Print evaluation summary."""
if not results:
print("β No results to summarize")
return
# Group by model
model_results = {}
for result in results:
if result.model_name not in model_results:
model_results[result.model_name] = []
model_results[result.model_name].append(result)
print(f"\nπ Evaluation Summary:")
print("=" * 60)
for model_name, model_result_list in model_results.items():
avg_composite = sum(r.composite_score for r in model_result_list) / len(model_result_list)
avg_correctness = sum(r.correctness_exact for r in model_result_list) / len(model_result_list)
avg_f1 = sum(r.result_match_f1 for r in model_result_list) / len(model_result_list)
avg_exec = sum(r.exec_success for r in model_result_list) / len(model_result_list)
avg_latency = sum(r.latency_ms for r in model_result_list) / len(model_result_list)
print(f"\nπ€ {model_name}:")
print(f" Composite Score: {avg_composite:.3f}")
print(f" Correctness: {avg_correctness:.3f}")
print(f" Result Match F1: {avg_f1:.3f}")
print(f" Execution Success: {avg_exec:.3f}")
print(f" Avg Latency: {avg_latency:.1f}ms")
print(f" Cases Evaluated: {len(model_result_list)}")
# Global instance
langchain_evaluator = LangChainEvaluator()
|