Spaces:
Sleeping
Sleeping
File size: 14,794 Bytes
acd8e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
"""
RAGAS-based Evaluator
Uses RAGAS for comprehensive SQL evaluation metrics.
"""
import os
import time
import pandas as pd
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
import duckdb
import sqlglot
from ragas import evaluate
from ragas.metrics import (
faithfulness,
answer_relevancy,
context_precision,
context_recall
)
from ragas.testset import TestsetGenerator
from datasets import Dataset
import numpy as np
# HuggingFace LLM for RAGAS
from ragas.llms import LangchainLLMWrapper
from langchain_huggingface import HuggingFacePipeline
from transformers import pipeline
@dataclass
class EvaluationResult:
"""Result of a single evaluation."""
model_name: str
dataset_name: str
dialect: str
case_id: str
question: str
reference_sql: str
generated_sql: str
correctness_exact: float
result_match_f1: float
exec_success: float
latency_ms: float
readability: float
dialect_ok: float
ragas_faithfulness: float
ragas_relevancy: float
ragas_precision: float
ragas_recall: float
composite_score: float
class RAGASEvaluator:
"""RAGAS-based evaluator for SQL generation."""
def __init__(self):
# Initialize HuggingFace LLM for RAGAS
self.hf_llm = None
self._setup_huggingface_llm()
self.ragas_metrics = [
faithfulness,
answer_relevancy,
context_precision,
context_recall
]
def _setup_huggingface_llm(self):
"""Setup HuggingFace LLM for RAGAS evaluation."""
try:
# Create a HuggingFace pipeline for evaluation
# Use a lightweight model for evaluation tasks
hf_pipeline = pipeline(
"text-generation",
model="microsoft/DialoGPT-small",
max_new_tokens=256,
temperature=0.1,
do_sample=True,
device=-1 # Use CPU for evaluation
)
# Wrap the pipeline in LangChain
langchain_llm = HuggingFacePipeline(pipeline=hf_pipeline)
# Wrap LangChain LLM for RAGAS
self.hf_llm = LangchainLLMWrapper(langchain_llm=langchain_llm)
print("✅ HuggingFace LLM configured for RAGAS evaluation")
except Exception as e:
print(f"⚠️ Could not setup HuggingFace LLM for RAGAS: {e}")
print(" RAGAS metrics will be skipped")
self.hf_llm = None
def evaluate_sql(
self,
model_name: str,
dataset_name: str,
dialect: str,
case_id: str,
question: str,
reference_sql: str,
generated_sql: str,
schema: str,
db_path: str
) -> EvaluationResult:
"""Evaluate a single SQL generation."""
start_time = time.time()
# Basic metrics
correctness_exact = self._calculate_exact_match(reference_sql, generated_sql)
result_match_f1 = self._calculate_result_match_f1(
reference_sql, generated_sql, db_path
)
exec_success = self._calculate_execution_success(generated_sql, db_path)
readability = self._calculate_readability(generated_sql)
dialect_ok = self._calculate_dialect_compliance(generated_sql, dialect)
# RAGAS metrics
ragas_metrics = self._calculate_ragas_metrics(
question, generated_sql, reference_sql, schema
)
latency_ms = (time.time() - start_time) * 1000
# Composite score
composite_score = self._calculate_composite_score(
correctness_exact, result_match_f1, exec_success,
latency_ms, readability, dialect_ok, ragas_metrics
)
return EvaluationResult(
model_name=model_name,
dataset_name=dataset_name,
dialect=dialect,
case_id=case_id,
question=question,
reference_sql=reference_sql,
generated_sql=generated_sql,
correctness_exact=correctness_exact,
result_match_f1=result_match_f1,
exec_success=exec_success,
latency_ms=latency_ms,
readability=readability,
dialect_ok=dialect_ok,
ragas_faithfulness=ragas_metrics.get('faithfulness', 0.0),
ragas_relevancy=ragas_metrics.get('answer_relevancy', 0.0),
ragas_precision=ragas_metrics.get('context_precision', 0.0),
ragas_recall=ragas_metrics.get('context_recall', 0.0),
composite_score=composite_score
)
def _calculate_exact_match(self, reference_sql: str, generated_sql: str) -> float:
"""Calculate exact match score."""
# Normalize SQL for comparison
try:
ref_normalized = sqlglot.parse_one(reference_sql).sql()
gen_normalized = sqlglot.parse_one(generated_sql).sql()
return 1.0 if ref_normalized.lower() == gen_normalized.lower() else 0.0
except:
return 0.0
def _calculate_result_match_f1(self, reference_sql: str, generated_sql: str, db_path: str) -> float:
"""Calculate F1 score based on query results."""
try:
# Execute both queries
ref_results = self._execute_sql(reference_sql, db_path)
gen_results = self._execute_sql(generated_sql, db_path)
if ref_results is None or gen_results is None:
return 0.0
# Convert to sets for comparison
ref_set = set(str(row) for row in ref_results)
gen_set = set(str(row) for row in gen_results)
if not ref_set and not gen_set:
return 1.0
if not ref_set or not gen_set:
return 0.0
# Calculate F1
intersection = len(ref_set & gen_set)
precision = intersection / len(gen_set) if gen_set else 0
recall = intersection / len(ref_set) if ref_set else 0
if precision + recall == 0:
return 0.0
return 2 * (precision * recall) / (precision + recall)
except Exception as e:
print(f"⚠️ Error calculating result match F1: {e}")
return 0.0
def _calculate_execution_success(self, sql: str, db_path: str) -> float:
"""Calculate execution success rate."""
try:
result = self._execute_sql(sql, db_path)
return 1.0 if result is not None else 0.0
except:
return 0.0
def _calculate_readability(self, sql: str) -> float:
"""Calculate SQL readability score."""
try:
# Simple readability metrics
lines = sql.strip().split('\n')
avg_line_length = sum(len(line) for line in lines) / len(lines)
# Penalize very long lines and very short queries
if avg_line_length > 100 or len(sql.strip()) < 20:
return 0.5
elif avg_line_length > 80:
return 0.7
else:
return 1.0
except:
return 0.5
def _calculate_dialect_compliance(self, sql: str, dialect: str) -> float:
"""Calculate dialect compliance score."""
try:
# Parse and transpile to check dialect compliance
parsed = sqlglot.parse_one(sql)
transpiled = parsed.sql(dialect=dialect)
# If transpilation succeeds without errors, it's compliant
return 1.0 if transpiled else 0.0
except:
return 0.0
def _calculate_ragas_metrics(
self,
question: str,
generated_sql: str,
reference_sql: str,
schema: str
) -> Dict[str, float]:
"""Calculate RAGAS metrics using HuggingFace models."""
try:
# Check if HuggingFace LLM is available
if self.hf_llm is None:
print("⚠️ No HuggingFace LLM configured - skipping RAGAS metrics")
return {
'faithfulness': 0.0,
'answer_relevancy': 0.0,
'context_precision': 0.0,
'context_recall': 0.0
}
# Check if OpenAI API key is available (still required by RAGAS)
if not os.getenv("OPENAI_API_KEY"):
print("⚠️ No OpenAI API key found - RAGAS still requires it for internal operations")
return {
'faithfulness': 0.0,
'answer_relevancy': 0.0,
'context_precision': 0.0,
'context_recall': 0.0
}
# Create dataset for RAGAS evaluation
dataset = Dataset.from_dict({
"question": [question],
"answer": [generated_sql],
"contexts": [[schema]],
"ground_truth": [reference_sql]
})
# Configure metrics to use HuggingFace LLM
# Create new metric instances with the HuggingFace LLM
metrics_with_hf = []
for metric in self.ragas_metrics:
# Create a new instance of the metric with the HuggingFace LLM
if hasattr(metric, '__class__'):
new_metric = metric.__class__()
if hasattr(new_metric, 'llm'):
new_metric.llm = self.hf_llm
metrics_with_hf.append(new_metric)
else:
metrics_with_hf.append(metric)
# Evaluate with RAGAS using HuggingFace LLM
result = evaluate(
dataset,
metrics=metrics_with_hf
)
return {
'faithfulness': result['faithfulness'][0] if 'faithfulness' in result else 0.0,
'answer_relevancy': result['answer_relevancy'][0] if 'answer_relevancy' in result else 0.0,
'context_precision': result['context_precision'][0] if 'context_precision' in result else 0.0,
'context_recall': result['context_recall'][0] if 'context_recall' in result else 0.0
}
except Exception as e:
print(f"⚠️ Error calculating RAGAS metrics with HuggingFace: {e}")
return {
'faithfulness': 0.0,
'answer_relevancy': 0.0,
'context_precision': 0.0,
'context_recall': 0.0
}
def _execute_sql(self, sql: str, db_path: str) -> Optional[List]:
"""Execute SQL query and return results."""
try:
conn = duckdb.connect(db_path)
result = conn.execute(sql).fetchall()
conn.close()
return result
except Exception as e:
print(f"⚠️ SQL execution error: {e}")
return None
def _calculate_composite_score(
self,
correctness_exact: float,
result_match_f1: float,
exec_success: float,
latency_ms: float,
readability: float,
dialect_ok: float,
ragas_metrics: Dict[str, float]
) -> float:
"""Calculate composite score with RAGAS metrics."""
# Weights for different metrics
weights = {
'correctness_exact': 0.25,
'result_match_f1': 0.20,
'exec_success': 0.15,
'latency': 0.10,
'readability': 0.05,
'dialect_ok': 0.05,
'ragas_faithfulness': 0.10,
'ragas_relevancy': 0.10
}
# Normalize latency (lower is better)
latency_score = max(0, 1 - (latency_ms / 5000)) # 5 second max
# Calculate weighted score
score = (
weights['correctness_exact'] * correctness_exact +
weights['result_match_f1'] * result_match_f1 +
weights['exec_success'] * exec_success +
weights['latency'] * latency_score +
weights['readability'] * readability +
weights['dialect_ok'] * dialect_ok +
weights['ragas_faithfulness'] * ragas_metrics.get('faithfulness', 0.0) +
weights['ragas_relevancy'] * ragas_metrics.get('answer_relevancy', 0.0)
)
return min(1.0, max(0.0, score))
def evaluate_batch(
self,
evaluations: List[Dict[str, Any]]
) -> List[EvaluationResult]:
"""Evaluate a batch of SQL generations."""
results = []
for eval_data in evaluations:
result = self.evaluate_sql(
model_name=eval_data['model_name'],
dataset_name=eval_data['dataset_name'],
dialect=eval_data['dialect'],
case_id=eval_data['case_id'],
question=eval_data['question'],
reference_sql=eval_data['reference_sql'],
generated_sql=eval_data['generated_sql'],
schema=eval_data['schema'],
db_path=eval_data['db_path']
)
results.append(result)
return results
def save_results(self, results: List[EvaluationResult], filepath: str):
"""Save evaluation results to file."""
data = []
for result in results:
data.append({
'model_name': result.model_name,
'dataset_name': result.dataset_name,
'dialect': result.dialect,
'case_id': result.case_id,
'question': result.question,
'reference_sql': result.reference_sql,
'generated_sql': result.generated_sql,
'correctness_exact': result.correctness_exact,
'result_match_f1': result.result_match_f1,
'exec_success': result.exec_success,
'latency_ms': result.latency_ms,
'readability': result.readability,
'dialect_ok': result.dialect_ok,
'ragas_faithfulness': result.ragas_faithfulness,
'ragas_relevancy': result.ragas_relevancy,
'ragas_precision': result.ragas_precision,
'ragas_recall': result.ragas_recall,
'composite_score': result.composite_score
})
df = pd.DataFrame(data)
df.to_parquet(filepath, index=False)
print(f"💾 Results saved to {filepath}")
# Global instance
ragas_evaluator = RAGASEvaluator()
|