""" RAGAS-based Evaluator Uses RAGAS for comprehensive SQL evaluation metrics. """ import os import time import pandas as pd from typing import Dict, List, Any, Optional from dataclasses import dataclass import duckdb import sqlglot from ragas import evaluate from ragas.metrics import ( faithfulness, answer_relevancy, context_precision, context_recall ) from ragas.testset import TestsetGenerator from datasets import Dataset import numpy as np # HuggingFace LLM for RAGAS from ragas.llms import LangchainLLMWrapper from langchain_huggingface import HuggingFacePipeline from transformers import pipeline @dataclass class EvaluationResult: """Result of a single evaluation.""" model_name: str dataset_name: str dialect: str case_id: str question: str reference_sql: str generated_sql: str correctness_exact: float result_match_f1: float exec_success: float latency_ms: float readability: float dialect_ok: float ragas_faithfulness: float ragas_relevancy: float ragas_precision: float ragas_recall: float composite_score: float class RAGASEvaluator: """RAGAS-based evaluator for SQL generation.""" def __init__(self): # Initialize HuggingFace LLM for RAGAS self.hf_llm = None self._setup_huggingface_llm() self.ragas_metrics = [ faithfulness, answer_relevancy, context_precision, context_recall ] def _setup_huggingface_llm(self): """Setup HuggingFace LLM for RAGAS evaluation.""" try: # Create a HuggingFace pipeline for evaluation # Use a lightweight model for evaluation tasks hf_pipeline = pipeline( "text-generation", model="microsoft/DialoGPT-small", max_new_tokens=256, temperature=0.1, do_sample=True, device=-1 # Use CPU for evaluation ) # Wrap the pipeline in LangChain langchain_llm = HuggingFacePipeline(pipeline=hf_pipeline) # Wrap LangChain LLM for RAGAS self.hf_llm = LangchainLLMWrapper(langchain_llm=langchain_llm) print("✅ HuggingFace LLM configured for RAGAS evaluation") except Exception as e: print(f"⚠️ Could not setup HuggingFace LLM for RAGAS: {e}") print(" RAGAS metrics will be skipped") self.hf_llm = None def evaluate_sql( self, model_name: str, dataset_name: str, dialect: str, case_id: str, question: str, reference_sql: str, generated_sql: str, schema: str, db_path: str ) -> EvaluationResult: """Evaluate a single SQL generation.""" start_time = time.time() # Basic metrics correctness_exact = self._calculate_exact_match(reference_sql, generated_sql) result_match_f1 = self._calculate_result_match_f1( reference_sql, generated_sql, db_path ) exec_success = self._calculate_execution_success(generated_sql, db_path) readability = self._calculate_readability(generated_sql) dialect_ok = self._calculate_dialect_compliance(generated_sql, dialect) # RAGAS metrics ragas_metrics = self._calculate_ragas_metrics( question, generated_sql, reference_sql, schema ) latency_ms = (time.time() - start_time) * 1000 # Composite score composite_score = self._calculate_composite_score( correctness_exact, result_match_f1, exec_success, latency_ms, readability, dialect_ok, ragas_metrics ) return EvaluationResult( model_name=model_name, dataset_name=dataset_name, dialect=dialect, case_id=case_id, question=question, reference_sql=reference_sql, generated_sql=generated_sql, correctness_exact=correctness_exact, result_match_f1=result_match_f1, exec_success=exec_success, latency_ms=latency_ms, readability=readability, dialect_ok=dialect_ok, ragas_faithfulness=ragas_metrics.get('faithfulness', 0.0), ragas_relevancy=ragas_metrics.get('answer_relevancy', 0.0), ragas_precision=ragas_metrics.get('context_precision', 0.0), ragas_recall=ragas_metrics.get('context_recall', 0.0), composite_score=composite_score ) def _calculate_exact_match(self, reference_sql: str, generated_sql: str) -> float: """Calculate exact match score.""" # Normalize SQL for comparison try: ref_normalized = sqlglot.parse_one(reference_sql).sql() gen_normalized = sqlglot.parse_one(generated_sql).sql() return 1.0 if ref_normalized.lower() == gen_normalized.lower() else 0.0 except: return 0.0 def _calculate_result_match_f1(self, reference_sql: str, generated_sql: str, db_path: str) -> float: """Calculate F1 score based on query results.""" try: # Execute both queries ref_results = self._execute_sql(reference_sql, db_path) gen_results = self._execute_sql(generated_sql, db_path) if ref_results is None or gen_results is None: return 0.0 # Convert to sets for comparison ref_set = set(str(row) for row in ref_results) gen_set = set(str(row) for row in gen_results) if not ref_set and not gen_set: return 1.0 if not ref_set or not gen_set: return 0.0 # Calculate F1 intersection = len(ref_set & gen_set) precision = intersection / len(gen_set) if gen_set else 0 recall = intersection / len(ref_set) if ref_set else 0 if precision + recall == 0: return 0.0 return 2 * (precision * recall) / (precision + recall) except Exception as e: print(f"⚠️ Error calculating result match F1: {e}") return 0.0 def _calculate_execution_success(self, sql: str, db_path: str) -> float: """Calculate execution success rate.""" try: result = self._execute_sql(sql, db_path) return 1.0 if result is not None else 0.0 except: return 0.0 def _calculate_readability(self, sql: str) -> float: """Calculate SQL readability score.""" try: # Simple readability metrics lines = sql.strip().split('\n') avg_line_length = sum(len(line) for line in lines) / len(lines) # Penalize very long lines and very short queries if avg_line_length > 100 or len(sql.strip()) < 20: return 0.5 elif avg_line_length > 80: return 0.7 else: return 1.0 except: return 0.5 def _calculate_dialect_compliance(self, sql: str, dialect: str) -> float: """Calculate dialect compliance score.""" try: # Parse and transpile to check dialect compliance parsed = sqlglot.parse_one(sql) transpiled = parsed.sql(dialect=dialect) # If transpilation succeeds without errors, it's compliant return 1.0 if transpiled else 0.0 except: return 0.0 def _calculate_ragas_metrics( self, question: str, generated_sql: str, reference_sql: str, schema: str ) -> Dict[str, float]: """Calculate RAGAS metrics using HuggingFace models.""" try: # Check if HuggingFace LLM is available if self.hf_llm is None: print("⚠️ No HuggingFace LLM configured - skipping RAGAS metrics") return { 'faithfulness': 0.0, 'answer_relevancy': 0.0, 'context_precision': 0.0, 'context_recall': 0.0 } # Check if OpenAI API key is available (still required by RAGAS) if not os.getenv("OPENAI_API_KEY"): print("⚠️ No OpenAI API key found - RAGAS still requires it for internal operations") return { 'faithfulness': 0.0, 'answer_relevancy': 0.0, 'context_precision': 0.0, 'context_recall': 0.0 } # Create dataset for RAGAS evaluation dataset = Dataset.from_dict({ "question": [question], "answer": [generated_sql], "contexts": [[schema]], "ground_truth": [reference_sql] }) # Configure metrics to use HuggingFace LLM # Create new metric instances with the HuggingFace LLM metrics_with_hf = [] for metric in self.ragas_metrics: # Create a new instance of the metric with the HuggingFace LLM if hasattr(metric, '__class__'): new_metric = metric.__class__() if hasattr(new_metric, 'llm'): new_metric.llm = self.hf_llm metrics_with_hf.append(new_metric) else: metrics_with_hf.append(metric) # Evaluate with RAGAS using HuggingFace LLM result = evaluate( dataset, metrics=metrics_with_hf ) return { 'faithfulness': result['faithfulness'][0] if 'faithfulness' in result else 0.0, 'answer_relevancy': result['answer_relevancy'][0] if 'answer_relevancy' in result else 0.0, 'context_precision': result['context_precision'][0] if 'context_precision' in result else 0.0, 'context_recall': result['context_recall'][0] if 'context_recall' in result else 0.0 } except Exception as e: print(f"⚠️ Error calculating RAGAS metrics with HuggingFace: {e}") return { 'faithfulness': 0.0, 'answer_relevancy': 0.0, 'context_precision': 0.0, 'context_recall': 0.0 } def _execute_sql(self, sql: str, db_path: str) -> Optional[List]: """Execute SQL query and return results.""" try: conn = duckdb.connect(db_path) result = conn.execute(sql).fetchall() conn.close() return result except Exception as e: print(f"⚠️ SQL execution error: {e}") return None def _calculate_composite_score( self, correctness_exact: float, result_match_f1: float, exec_success: float, latency_ms: float, readability: float, dialect_ok: float, ragas_metrics: Dict[str, float] ) -> float: """Calculate composite score with RAGAS metrics.""" # Weights for different metrics weights = { 'correctness_exact': 0.25, 'result_match_f1': 0.20, 'exec_success': 0.15, 'latency': 0.10, 'readability': 0.05, 'dialect_ok': 0.05, 'ragas_faithfulness': 0.10, 'ragas_relevancy': 0.10 } # Normalize latency (lower is better) latency_score = max(0, 1 - (latency_ms / 5000)) # 5 second max # Calculate weighted score score = ( weights['correctness_exact'] * correctness_exact + weights['result_match_f1'] * result_match_f1 + weights['exec_success'] * exec_success + weights['latency'] * latency_score + weights['readability'] * readability + weights['dialect_ok'] * dialect_ok + weights['ragas_faithfulness'] * ragas_metrics.get('faithfulness', 0.0) + weights['ragas_relevancy'] * ragas_metrics.get('answer_relevancy', 0.0) ) return min(1.0, max(0.0, score)) def evaluate_batch( self, evaluations: List[Dict[str, Any]] ) -> List[EvaluationResult]: """Evaluate a batch of SQL generations.""" results = [] for eval_data in evaluations: result = self.evaluate_sql( model_name=eval_data['model_name'], dataset_name=eval_data['dataset_name'], dialect=eval_data['dialect'], case_id=eval_data['case_id'], question=eval_data['question'], reference_sql=eval_data['reference_sql'], generated_sql=eval_data['generated_sql'], schema=eval_data['schema'], db_path=eval_data['db_path'] ) results.append(result) return results def save_results(self, results: List[EvaluationResult], filepath: str): """Save evaluation results to file.""" data = [] for result in results: data.append({ 'model_name': result.model_name, 'dataset_name': result.dataset_name, 'dialect': result.dialect, 'case_id': result.case_id, 'question': result.question, 'reference_sql': result.reference_sql, 'generated_sql': result.generated_sql, 'correctness_exact': result.correctness_exact, 'result_match_f1': result.result_match_f1, 'exec_success': result.exec_success, 'latency_ms': result.latency_ms, 'readability': result.readability, 'dialect_ok': result.dialect_ok, 'ragas_faithfulness': result.ragas_faithfulness, 'ragas_relevancy': result.ragas_relevancy, 'ragas_precision': result.ragas_precision, 'ragas_recall': result.ragas_recall, 'composite_score': result.composite_score }) df = pd.DataFrame(data) df.to_parquet(filepath, index=False) print(f"💾 Results saved to {filepath}") # Global instance ragas_evaluator = RAGASEvaluator()