Spaces:
Configuration error
Configuration error
Create agent.py
Browse files
agent.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 4 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
| 5 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
| 6 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 7 |
+
from langchain.tools.retriever import create_retriever_tool
|
| 8 |
+
from langchain_core.tools import tool
|
| 9 |
+
from supabase.client import Client, create_client
|
| 10 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 11 |
+
from langchain_huggingface import (
|
| 12 |
+
ChatHuggingFace,
|
| 13 |
+
HuggingFaceEndpoint,
|
| 14 |
+
HuggingFaceEmbeddings,
|
| 15 |
+
)
|
| 16 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 17 |
+
|
| 18 |
+
load_dotenv()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@tool
|
| 22 |
+
def wikipedia_search(query: str) -> str:
|
| 23 |
+
"""Search Wikipedia for a query and return maximum 2 results
|
| 24 |
+
Args:
|
| 25 |
+
query: The search string
|
| 26 |
+
"""
|
| 27 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 28 |
+
all_search_docs = "\n\n---\n\n".join(
|
| 29 |
+
[
|
| 30 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 31 |
+
for doc in docs
|
| 32 |
+
]
|
| 33 |
+
)
|
| 34 |
+
return {"wikipedia_results": all_search_docs}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@tool
|
| 38 |
+
def web_search(query: str) -> str:
|
| 39 |
+
"""Search Tavily for a query and return maximum 3 results.
|
| 40 |
+
Args:
|
| 41 |
+
query: The search query."""
|
| 42 |
+
docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 43 |
+
all_search_docs = "\n\n---\n\n".join(
|
| 44 |
+
[
|
| 45 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 46 |
+
for doc in docs
|
| 47 |
+
]
|
| 48 |
+
)
|
| 49 |
+
return {"web_results": all_search_docs}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@tool
|
| 53 |
+
def arvix_search(query: str) -> str:
|
| 54 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
| 55 |
+
Args:
|
| 56 |
+
query: The search query."""
|
| 57 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 58 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 59 |
+
[
|
| 60 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 61 |
+
for doc in search_docs
|
| 62 |
+
]
|
| 63 |
+
)
|
| 64 |
+
return {"arvix_results": formatted_search_docs}
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 68 |
+
system_prompt = f.read()
|
| 69 |
+
|
| 70 |
+
sys_msg = SystemMessage(system_prompt)
|
| 71 |
+
supabase: Client = create_client(
|
| 72 |
+
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
supabase_store = SupabaseVectorStore(
|
| 76 |
+
client=supabase,
|
| 77 |
+
embedding=HuggingFaceEmbeddings(
|
| 78 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
| 79 |
+
),
|
| 80 |
+
table_name="search_documents",
|
| 81 |
+
query_name="langchain_match_documents",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
retriever_tool = create_retriever_tool(
|
| 85 |
+
retriever=supabase_store.as_retriever(
|
| 86 |
+
search_type="similarity", search_kwargs={"k": 5}
|
| 87 |
+
),
|
| 88 |
+
name="question_search",
|
| 89 |
+
description="A tool to retrieve similar questions from a vector store.",
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
tools = [
|
| 93 |
+
wikipedia_search,
|
| 94 |
+
web_search,
|
| 95 |
+
arvix_search,
|
| 96 |
+
retriever_tool,
|
| 97 |
+
]
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def build_graph():
|
| 101 |
+
llm = ChatHuggingFace(
|
| 102 |
+
llm=HuggingFaceEndpoint(repo_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 106 |
+
|
| 107 |
+
def assistant(state: MessagesState):
|
| 108 |
+
"""Assistant node"""
|
| 109 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
| 110 |
+
|
| 111 |
+
def retriever(state: MessagesState):
|
| 112 |
+
"""Retriever node"""
|
| 113 |
+
similar_question = supabase_store.similarity_search(
|
| 114 |
+
state["messages"][0].content
|
| 115 |
+
)
|
| 116 |
+
print("Similar questions:")
|
| 117 |
+
print(similar_question)
|
| 118 |
+
if len(similar_question) > 0:
|
| 119 |
+
example_msg = HumanMessage(
|
| 120 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
| 121 |
+
)
|
| 122 |
+
# return {"messages": [{"role": "system", "content": similar_question[0].page_content}]}
|
| 123 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
| 124 |
+
return {"messages": [sys_msg] + state["messages"]}
|
| 125 |
+
|
| 126 |
+
builder = StateGraph(MessagesState)
|
| 127 |
+
builder.add_node("retriever", retriever)
|
| 128 |
+
builder.add_node("assistant", assistant)
|
| 129 |
+
builder.add_node("tools", ToolNode(tools))
|
| 130 |
+
builder.add_edge(START, "retriever")
|
| 131 |
+
builder.add_edge("retriever", "assistant")
|
| 132 |
+
builder.add_conditional_edges(
|
| 133 |
+
"assistant",
|
| 134 |
+
tools_condition,
|
| 135 |
+
)
|
| 136 |
+
builder.add_edge("tools", "assistant")
|
| 137 |
+
|
| 138 |
+
return builder.compile()
|