vaibhav-vibe commited on
Commit
705d9da
·
verified ·
1 Parent(s): ee7fc7a

Create agent.py

Browse files
Files changed (1) hide show
  1. agent.py +138 -0
agent.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from langgraph.prebuilt import ToolNode, tools_condition
4
+ from langchain_core.messages import SystemMessage, HumanMessage
5
+ from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
6
+ from langchain_community.tools.tavily_search import TavilySearchResults
7
+ from langchain.tools.retriever import create_retriever_tool
8
+ from langchain_core.tools import tool
9
+ from supabase.client import Client, create_client
10
+ from langchain_community.vectorstores import SupabaseVectorStore
11
+ from langchain_huggingface import (
12
+ ChatHuggingFace,
13
+ HuggingFaceEndpoint,
14
+ HuggingFaceEmbeddings,
15
+ )
16
+ from langgraph.graph import START, StateGraph, MessagesState
17
+
18
+ load_dotenv()
19
+
20
+
21
+ @tool
22
+ def wikipedia_search(query: str) -> str:
23
+ """Search Wikipedia for a query and return maximum 2 results
24
+ Args:
25
+ query: The search string
26
+ """
27
+ docs = WikipediaLoader(query=query, load_max_docs=2).load()
28
+ all_search_docs = "\n\n---\n\n".join(
29
+ [
30
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
31
+ for doc in docs
32
+ ]
33
+ )
34
+ return {"wikipedia_results": all_search_docs}
35
+
36
+
37
+ @tool
38
+ def web_search(query: str) -> str:
39
+ """Search Tavily for a query and return maximum 3 results.
40
+ Args:
41
+ query: The search query."""
42
+ docs = TavilySearchResults(max_results=3).invoke(query=query)
43
+ all_search_docs = "\n\n---\n\n".join(
44
+ [
45
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
46
+ for doc in docs
47
+ ]
48
+ )
49
+ return {"web_results": all_search_docs}
50
+
51
+
52
+ @tool
53
+ def arvix_search(query: str) -> str:
54
+ """Search Arxiv for a query and return maximum 3 result.
55
+ Args:
56
+ query: The search query."""
57
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
58
+ formatted_search_docs = "\n\n---\n\n".join(
59
+ [
60
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
61
+ for doc in search_docs
62
+ ]
63
+ )
64
+ return {"arvix_results": formatted_search_docs}
65
+
66
+
67
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
68
+ system_prompt = f.read()
69
+
70
+ sys_msg = SystemMessage(system_prompt)
71
+ supabase: Client = create_client(
72
+ os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")
73
+ )
74
+
75
+ supabase_store = SupabaseVectorStore(
76
+ client=supabase,
77
+ embedding=HuggingFaceEmbeddings(
78
+ model_name="sentence-transformers/all-mpnet-base-v2"
79
+ ),
80
+ table_name="search_documents",
81
+ query_name="langchain_match_documents",
82
+ )
83
+
84
+ retriever_tool = create_retriever_tool(
85
+ retriever=supabase_store.as_retriever(
86
+ search_type="similarity", search_kwargs={"k": 5}
87
+ ),
88
+ name="question_search",
89
+ description="A tool to retrieve similar questions from a vector store.",
90
+ )
91
+
92
+ tools = [
93
+ wikipedia_search,
94
+ web_search,
95
+ arvix_search,
96
+ retriever_tool,
97
+ ]
98
+
99
+
100
+ def build_graph():
101
+ llm = ChatHuggingFace(
102
+ llm=HuggingFaceEndpoint(repo_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
103
+ )
104
+
105
+ llm_with_tools = llm.bind_tools(tools)
106
+
107
+ def assistant(state: MessagesState):
108
+ """Assistant node"""
109
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
110
+
111
+ def retriever(state: MessagesState):
112
+ """Retriever node"""
113
+ similar_question = supabase_store.similarity_search(
114
+ state["messages"][0].content
115
+ )
116
+ print("Similar questions:")
117
+ print(similar_question)
118
+ if len(similar_question) > 0:
119
+ example_msg = HumanMessage(
120
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
121
+ )
122
+ # return {"messages": [{"role": "system", "content": similar_question[0].page_content}]}
123
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
124
+ return {"messages": [sys_msg] + state["messages"]}
125
+
126
+ builder = StateGraph(MessagesState)
127
+ builder.add_node("retriever", retriever)
128
+ builder.add_node("assistant", assistant)
129
+ builder.add_node("tools", ToolNode(tools))
130
+ builder.add_edge(START, "retriever")
131
+ builder.add_edge("retriever", "assistant")
132
+ builder.add_conditional_edges(
133
+ "assistant",
134
+ tools_condition,
135
+ )
136
+ builder.add_edge("tools", "assistant")
137
+
138
+ return builder.compile()