vaibhav-vibe's picture
Adding the langgraph logic and the logic to call the graph and return the answer
cd7d51b
import os
from dotenv import load_dotenv
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.tools.retriever import create_retriever_tool
from langchain_core.tools import tool
from supabase.client import Client, create_client
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_huggingface import (
ChatHuggingFace,
HuggingFaceEndpoint,
HuggingFaceEmbeddings,
)
from langgraph.graph import START, StateGraph, MessagesState
load_dotenv()
@tool
def wikipedia_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results
Args:
query: The search string
"""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
all_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in docs
]
)
return {"wikipedia_results": all_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
docs = TavilySearchResults(max_results=3).invoke(query=query)
all_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in docs
]
)
return {"web_results": all_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
]
)
return {"arvix_results": formatted_search_docs}
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(system_prompt)
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")
)
supabase_store = SupabaseVectorStore(
client=supabase,
embedding=HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
),
table_name="search_documents",
query_name="langchain_match_documents",
)
retriever_tool = create_retriever_tool(
retriever=supabase_store.as_retriever(
search_type="similarity", search_kwargs={"k": 5}
),
name="question_search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
wikipedia_search,
web_search,
arvix_search,
retriever_tool,
]
def build_graph():
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(repo_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = supabase_store.similarity_search(
state["messages"][0].content
)
print("Similar questions:")
print(similar_question)
if len(similar_question) > 0:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
# return {"messages": [{"role": "system", "content": similar_question[0].page_content}]}
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
return builder.compile()