import os from dotenv import load_dotenv from langgraph.prebuilt import ToolNode, tools_condition from langchain_core.messages import SystemMessage, HumanMessage from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.tools.tavily_search import TavilySearchResults from langchain.tools.retriever import create_retriever_tool from langchain_core.tools import tool from supabase.client import Client, create_client from langchain_community.vectorstores import SupabaseVectorStore from langchain_huggingface import ( ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings, ) from langgraph.graph import START, StateGraph, MessagesState load_dotenv() @tool def wikipedia_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results Args: query: The search string """ docs = WikipediaLoader(query=query, load_max_docs=2).load() all_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in docs ] ) return {"wikipedia_results": all_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" docs = TavilySearchResults(max_results=3).invoke(query=query) all_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in docs ] ) return {"web_results": all_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ] ) return {"arvix_results": formatted_search_docs} with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(system_prompt) supabase: Client = create_client( os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY") ) supabase_store = SupabaseVectorStore( client=supabase, embedding=HuggingFaceEmbeddings( model_name="sentence-transformers/all-mpnet-base-v2" ), table_name="search_documents", query_name="langchain_match_documents", ) retriever_tool = create_retriever_tool( retriever=supabase_store.as_retriever( search_type="similarity", search_kwargs={"k": 5} ), name="question_search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ wikipedia_search, web_search, arvix_search, retriever_tool, ] def build_graph(): llm = ChatHuggingFace( llm=HuggingFaceEndpoint(repo_id="Qwen/Qwen2.5-Coder-32B-Instruct"), ) llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): """Retriever node""" similar_question = supabase_store.similarity_search( state["messages"][0].content ) print("Similar questions:") print(similar_question) if len(similar_question) > 0: example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) # return {"messages": [{"role": "system", "content": similar_question[0].page_content}]} return {"messages": [sys_msg] + state["messages"] + [example_msg]} return {"messages": [sys_msg] + state["messages"]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") return builder.compile()