Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- .gitattributes +1 -0
- data/imdb.csv +3 -0
- data/rnn_preprocessing.py +81 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
data/imdb.csv filter=lfs diff=lfs merge=lfs -text
|
data/imdb.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dfc447764f82be365fa9c2beef4e8df89d3919e3da95f5088004797d79695aa2
|
| 3 |
+
size 66212309
|
data/rnn_preprocessing.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import string
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from nltk.corpus import stopwords
|
| 7 |
+
import nltk
|
| 8 |
+
nltk.download('stopwords')
|
| 9 |
+
stop_words = set(stopwords.words('english'))
|
| 10 |
+
|
| 11 |
+
def data_preprocessing(text: str) -> str:
|
| 12 |
+
"""preprocessing string: lowercase, removing html-tags, punctuation,
|
| 13 |
+
stopwords, digits
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
text (str): input string for preprocessing
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
str: preprocessed string
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
text = text.lower()
|
| 23 |
+
text = re.sub('<.*?>', '', text) # html tags
|
| 24 |
+
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
|
| 25 |
+
text = ' '.join([word for word in text.split() if word not in stop_words])
|
| 26 |
+
text = [word for word in text.split() if not word.isdigit()]
|
| 27 |
+
text = ' '.join(text)
|
| 28 |
+
return text
|
| 29 |
+
|
| 30 |
+
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
|
| 31 |
+
return list(filter(lambda x: x[1] > n, sorted_words))
|
| 32 |
+
|
| 33 |
+
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
|
| 34 |
+
"""Make left-sided padding for input list of tokens
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
review_int (list): input list of tokens
|
| 38 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
np.array: padded sequences
|
| 42 |
+
"""
|
| 43 |
+
features = np.zeros((len(review_int), seq_len), dtype = int)
|
| 44 |
+
for i, review in enumerate(review_int):
|
| 45 |
+
if len(review) <= seq_len:
|
| 46 |
+
zeros = list(np.zeros(seq_len - len(review)))
|
| 47 |
+
new = zeros + review
|
| 48 |
+
else:
|
| 49 |
+
new = review[: seq_len]
|
| 50 |
+
features[i, :] = np.array(new)
|
| 51 |
+
|
| 52 |
+
return features
|
| 53 |
+
|
| 54 |
+
def preprocess_single_string(
|
| 55 |
+
input_string: str,
|
| 56 |
+
seq_len: int,
|
| 57 |
+
vocab_to_int: dict,
|
| 58 |
+
) -> torch.tensor:
|
| 59 |
+
"""Function for all preprocessing steps on a single string
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
input_string (str): input single string for preprocessing
|
| 63 |
+
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
|
| 64 |
+
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
list: preprocessed string
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
preprocessed_string = data_preprocessing(input_string)
|
| 71 |
+
result_list = []
|
| 72 |
+
for word in preprocessed_string.split():
|
| 73 |
+
try:
|
| 74 |
+
result_list.append(vocab_to_int[word])
|
| 75 |
+
except KeyError as e:
|
| 76 |
+
print(f'{e}: not in dictionary!')
|
| 77 |
+
result_padded = padding([result_list], seq_len)[0]
|
| 78 |
+
|
| 79 |
+
return torch.tensor(result_padded)
|
| 80 |
+
|
| 81 |
+
|