Spaces:
Sleeping
Sleeping
Update pages/imdb.py
Browse files- pages/imdb.py +80 -138
pages/imdb.py
CHANGED
|
@@ -1,157 +1,99 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
-
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
import streamlit as st
|
| 7 |
-
import
|
| 8 |
-
import string
|
| 9 |
-
from collections import Counter
|
| 10 |
-
|
| 11 |
-
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 12 |
-
|
| 13 |
-
from gensim.models import Word2Vec
|
| 14 |
-
from string import punctuation
|
| 15 |
import transformers
|
| 16 |
-
import warnings
|
| 17 |
-
warnings.filterwarnings('ignore')
|
| 18 |
-
|
| 19 |
-
from sklearn.model_selection import train_test_split
|
| 20 |
import time
|
| 21 |
-
|
| 22 |
-
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
| 23 |
-
from sklearn.linear_model import LogisticRegression
|
| 24 |
import pickle
|
| 25 |
-
import
|
| 26 |
-
from
|
|
|
|
|
|
|
| 27 |
import torch.nn as nn
|
| 28 |
-
import torchutils as tu
|
| 29 |
-
from torchmetrics.classification import BinaryAccuracy
|
| 30 |
from data.rnn_preprocessing import (
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def main():
|
| 36 |
-
device = 'cpu'
|
| 37 |
df = pd.read_csv('data/imdb.csv')
|
| 38 |
df['sentiment'] = df['sentiment'].apply(lambda x: 1 if x == 'positive' else 0)
|
| 39 |
reviews = df['review'].tolist()
|
| 40 |
preprocessed = [data_preprocessing(review) for review in reviews]
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
words_list = [word for review in preprocessed for word in review.lower().split()]
|
| 45 |
-
for i in words_list:
|
| 46 |
-
''.join([j for j in i if j not in punctuation])
|
| 47 |
-
|
| 48 |
-
# делаем множество уникальных слов.
|
| 49 |
-
unique_words = set(words_list)
|
| 50 |
-
|
| 51 |
-
# word -> index
|
| 52 |
-
vocab_to_int = {word: idx+1 for idx, word in enumerate(sorted(unique_words))}
|
| 53 |
-
|
| 54 |
-
word_seq = [i.split() for i in preprocessed]
|
| 55 |
-
VOCAB_SIZE = len(vocab_to_int) + 1 # add 1 for the padding token
|
| 56 |
-
EMBEDDING_DIM = 32
|
| 57 |
-
HIDDEN_DIM = 64
|
| 58 |
-
SEQ_LEN = 32
|
| 59 |
-
|
| 60 |
-
embedding_matrix = np.zeros((VOCAB_SIZE, EMBEDDING_DIM))
|
| 61 |
-
|
| 62 |
-
for word, i in vocab_to_int.items():
|
| 63 |
-
try:
|
| 64 |
-
embedding_vector = wv.wv[word]
|
| 65 |
-
embedding_matrix[i] = embedding_vector
|
| 66 |
-
except KeyError:
|
| 67 |
-
pass
|
| 68 |
-
|
| 69 |
-
embedding_layer32 = torch.nn.Embedding.from_pretrained(torch.FloatTensor(embedding_matrix))
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
class LSTMClassifierBi32(nn.Module):
|
| 73 |
-
def __init__(self, embedding_dim: int, hidden_size:int = 32) -> None:
|
| 74 |
-
super().__init__()
|
| 75 |
-
|
| 76 |
-
self.embedding_dim = embedding_dim
|
| 77 |
-
self.hidden_size = hidden_size
|
| 78 |
-
self.embedding = embedding_layer32
|
| 79 |
-
self.lstm = nn.LSTM(
|
| 80 |
-
input_size=self.embedding_dim,
|
| 81 |
-
hidden_size=self.hidden_size,
|
| 82 |
-
batch_first=True,
|
| 83 |
-
bidirectional=True
|
| 84 |
-
)
|
| 85 |
-
self.clf = nn.Sequential(nn.Linear(self.hidden_size*2, 128),
|
| 86 |
-
nn.Dropout(),
|
| 87 |
-
nn.Sigmoid(),
|
| 88 |
-
nn.Linear(128, 64),
|
| 89 |
-
nn.Dropout(),
|
| 90 |
-
nn.Sigmoid(),
|
| 91 |
-
nn.Linear(64, 1)
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
def forward(self, x):
|
| 95 |
-
embeddings = self.embedding(x)
|
| 96 |
-
out, (_, _) = self.lstm(embeddings)
|
| 97 |
-
out = self.clf(out[:,-1,:])
|
| 98 |
-
return out
|
| 99 |
-
|
| 100 |
-
model = LSTMClassifierBi32(embedding_dim=EMBEDDING_DIM, hidden_size=HIDDEN_DIM)
|
| 101 |
-
model.load_state_dict(torch.load('models/ltsm_bi1.pt'))
|
| 102 |
-
model.eval()
|
| 103 |
-
|
| 104 |
-
def predict_sentence(text:str, model: nn.Module):
|
| 105 |
-
result = model.to(device)(preprocess_single_string(text, seq_len=SEQ_LEN, vocab_to_int=vocab_to_int).unsqueeze(0)).sigmoid().round().item()
|
| 106 |
-
return 'negative' if result == 0.0 else 'positive'
|
| 107 |
-
|
| 108 |
-
#Bag Tfidf
|
| 109 |
-
# bagvectorizer = CountVectorizer(max_df=0.5,
|
| 110 |
-
# min_df=5,
|
| 111 |
-
# stop_words="english",)
|
| 112 |
-
# bvect = bagvectorizer.fit(preprocessed)
|
| 113 |
-
# X_bag = bvect.transform(preprocessed)
|
| 114 |
-
|
| 115 |
-
tfid_vectorizer = TfidfVectorizer(
|
| 116 |
-
max_df=0.5,
|
| 117 |
-
min_df=5)
|
| 118 |
vect = tfid_vectorizer.fit(preprocessed)
|
| 119 |
X_tfidf = vect.transform(preprocessed)
|
| 120 |
-
|
| 121 |
-
tfidf_model = pickle.load(open('models/modeltfidf.sav', 'rb'))
|
| 122 |
-
# bag_model = pickle.load(open('models/modelbag.sav', 'rb'))
|
| 123 |
-
# def predictbag(text):
|
| 124 |
-
# result = bag_model.predict(vect.transform([text]))
|
| 125 |
-
# return 'negative' if result == [0] else 'positive'
|
| 126 |
-
|
| 127 |
-
def predicttf(text):
|
| 128 |
-
result = tfidf_model.predict(vect.transform([text]))
|
| 129 |
-
return 'negative' if result == [0] else 'positive'
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
review = st.text_input('Enter review')
|
| 140 |
|
| 141 |
start1 = time.time()
|
| 142 |
-
|
| 143 |
-
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 144 |
-
config = AutoConfig.from_pretrained('distilbert-base-uncased', num_labels=2)
|
| 145 |
-
|
| 146 |
-
automodel = AutoModelForSequenceClassification.from_config(config)
|
| 147 |
autotoken = transformers.AutoTokenizer.from_pretrained('distilbert-base-uncased-finetuned-sst-2-english')
|
| 148 |
|
| 149 |
input_tokens = autotoken(
|
| 150 |
-
review,
|
| 151 |
-
return_tensors='pt',
|
| 152 |
-
padding=True,
|
| 153 |
max_length=10
|
| 154 |
)
|
|
|
|
|
|
|
|
|
|
| 155 |
outputs = automodel(**input_tokens)
|
| 156 |
st.write('Sentiment Predictions')
|
| 157 |
st.write(f'\nBERT: {[automodel.config.id2label[i.item()] for i in outputs.logits.argmax(-1)]}')
|
|
@@ -159,20 +101,20 @@ def main():
|
|
| 159 |
st.write(f'{(end1 - start1):.2f} sec')
|
| 160 |
start2 = time.time()
|
| 161 |
|
| 162 |
-
st.write(f'
|
| 163 |
end2 = time.time()
|
| 164 |
st.write(f'{(end2 - start2):.2f} sec')
|
| 165 |
-
|
| 166 |
-
# st.write(f'bag+log: {predictbag(review)}')
|
| 167 |
-
# end3 = time.time()
|
| 168 |
-
# st.write(f'{(end3 - start3):.2f} sec')
|
| 169 |
start4 = time.time()
|
| 170 |
-
st.write(f'
|
| 171 |
end4 = time.time()
|
| 172 |
st.write(f'{(end4 - start4):.2f} sec')
|
| 173 |
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
if __name__ == '__main__':
|
| 178 |
-
main()
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
|
|
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import time
|
|
|
|
|
|
|
|
|
|
| 6 |
import pickle
|
| 7 |
+
import numpy as np
|
| 8 |
+
from gensim.models import Word2Vec
|
| 9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 10 |
+
from sklearn.linear_model import LogisticRegression
|
| 11 |
import torch.nn as nn
|
|
|
|
|
|
|
| 12 |
from data.rnn_preprocessing import (
|
| 13 |
+
data_preprocessing,
|
| 14 |
+
preprocess_single_string
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# Load Word2Vec model
|
| 18 |
+
wv = Word2Vec.load('models/word2vec32.model')
|
| 19 |
+
embedding_matrix = wv.wv.vectors
|
| 20 |
+
vocab_to_int = {word: idx + 1 for idx, word in enumerate(wv.wv.index_to_key)}
|
| 21 |
+
|
| 22 |
+
# Load TF-IDF model
|
| 23 |
+
tfidf_model = pickle.load(open('models/modeltfidf.sav', 'rb'))
|
| 24 |
+
|
| 25 |
+
# Load LSTM model
|
| 26 |
+
embedding_layer32 = torch.nn.Embedding.from_pretrained(torch.FloatTensor(embedding_matrix))
|
| 27 |
+
VOCAB_SIZE, EMBEDDING_DIM = embedding_matrix.shape
|
| 28 |
+
HIDDEN_DIM = 64
|
| 29 |
+
SEQ_LEN = 32
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class LSTMClassifierBi32(nn.Module):
|
| 33 |
+
def __init__(self, embedding_dim: int, hidden_size: int = 32) -> None:
|
| 34 |
+
super().__init__()
|
| 35 |
+
|
| 36 |
+
self.embedding_dim = embedding_dim
|
| 37 |
+
self.hidden_size = hidden_size
|
| 38 |
+
self.embedding = embedding_layer32
|
| 39 |
+
self.lstm = nn.LSTM(
|
| 40 |
+
input_size=self.embedding_dim,
|
| 41 |
+
hidden_size=self.hidden_size,
|
| 42 |
+
batch_first=True,
|
| 43 |
+
bidirectional=True
|
| 44 |
+
)
|
| 45 |
+
self.clf = nn.Sequential(
|
| 46 |
+
nn.Linear(self.hidden_size * 2, 128),
|
| 47 |
+
nn.Dropout(),
|
| 48 |
+
nn.Sigmoid(),
|
| 49 |
+
nn.Linear(128, 64),
|
| 50 |
+
nn.Dropout(),
|
| 51 |
+
nn.Sigmoid(),
|
| 52 |
+
nn.Linear(64, 1)
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
def forward(self, x):
|
| 56 |
+
embeddings = self.embedding(x)
|
| 57 |
+
out, (_, _) = self.lstm(embeddings)
|
| 58 |
+
out = self.clf(out[:, -1, :])
|
| 59 |
+
return out
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
model = LSTMClassifierBi32(embedding_dim=EMBEDDING_DIM, hidden_size=HIDDEN_DIM)
|
| 63 |
+
model.load_state_dict(torch.load('models/ltsm_bi1.pt'))
|
| 64 |
+
model.eval()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def predict_sentence(text: str, model: nn.Module):
|
| 68 |
+
result = model(preprocess_single_string(text, seq_len=SEQ_LEN, vocab_to_int=vocab_to_int).unsqueeze(0)).sigmoid().round().item()
|
| 69 |
+
return 'negative' if result == 0.0 else 'positive'
|
| 70 |
+
|
| 71 |
|
| 72 |
def main():
|
|
|
|
| 73 |
df = pd.read_csv('data/imdb.csv')
|
| 74 |
df['sentiment'] = df['sentiment'].apply(lambda x: 1 if x == 'positive' else 0)
|
| 75 |
reviews = df['review'].tolist()
|
| 76 |
preprocessed = [data_preprocessing(review) for review in reviews]
|
| 77 |
|
| 78 |
+
tfid_vectorizer = TfidfVectorizer(max_df=0.5, min_df=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
vect = tfid_vectorizer.fit(preprocessed)
|
| 80 |
X_tfidf = vect.transform(preprocessed)
|
| 81 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
review = st.text_input('Enter review')
|
| 83 |
|
| 84 |
start1 = time.time()
|
| 85 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
autotoken = transformers.AutoTokenizer.from_pretrained('distilbert-base-uncased-finetuned-sst-2-english')
|
| 87 |
|
| 88 |
input_tokens = autotoken(
|
| 89 |
+
review,
|
| 90 |
+
return_tensors='pt',
|
| 91 |
+
padding=True,
|
| 92 |
max_length=10
|
| 93 |
)
|
| 94 |
+
|
| 95 |
+
config = transformers.AutoConfig.from_pretrained('distilbert-base-uncased', num_labels=2)
|
| 96 |
+
automodel = transformers.AutoModelForSequenceClassification.from_config(config)
|
| 97 |
outputs = automodel(**input_tokens)
|
| 98 |
st.write('Sentiment Predictions')
|
| 99 |
st.write(f'\nBERT: {[automodel.config.id2label[i.item()] for i in outputs.logits.argmax(-1)]}')
|
|
|
|
| 101 |
st.write(f'{(end1 - start1):.2f} sec')
|
| 102 |
start2 = time.time()
|
| 103 |
|
| 104 |
+
st.write(f'LSTM: {predict_sentence(review, model)}')
|
| 105 |
end2 = time.time()
|
| 106 |
st.write(f'{(end2 - start2):.2f} sec')
|
| 107 |
+
|
|
|
|
|
|
|
|
|
|
| 108 |
start4 = time.time()
|
| 109 |
+
st.write(f'TF-IDF+Logistic Regression: {predicttf(review)}')
|
| 110 |
end4 = time.time()
|
| 111 |
st.write(f'{(end4 - start4):.2f} sec')
|
| 112 |
|
| 113 |
|
| 114 |
+
def predicttf(text):
|
| 115 |
+
result = tfidf_model.predict(vect.transform([text]))
|
| 116 |
+
return 'negative' if result == [0] else 'positive'
|
| 117 |
+
|
| 118 |
|
| 119 |
if __name__ == '__main__':
|
| 120 |
+
main()
|